Appendix 1 to Rozario D, Rozario N. Can machine learning optimize the efficiency of the
operating room in the era of COVID19? Can J Surg 2020.

DOI: 10.1603/cjs.016520

Copyright © 2020 The Author(s) or their employer(s).
To receive this resource in an accessible format, please contact us at cmajgroup@cmaj.ca.

Online appendices are unedited and posted as supplied by the authors.
The following information is a python code script which can be used to replicate the findings.

Natasha Rozario

This script reads data from an excel file about past procedures and the times they took, and
uses google's or-tools

to calculate scheduling times for each procedure type that minimizes the undertime and
overtime frequencies of

the operating room as a whole

from __future__ import print_function
from ortools.sat.python import cp_model
import pandas as pd

import sys

import math

Parameters
targetOvertimeFrequency = 0.2
targetUndertimeFrequency = 0
undertimeCostWeight = 1
overtimeCostWeight = 1

arguments = sys.argv
excellnputFile = 'input.xIsx'
excelOutputFile = 'output.xIsx'

overtimeBlockLength = 15 # length of overtime blocks in minutes
noOfNursesPerBlock = 2.5 # number of nurses per overtime block
overtimeSalary = 75 # pay by block for overtime nurses

Optional: get excel filenames from command line argument
if (len{farguments) > 1):

excellnputFile = striarguments|1])

excelOutputFile = strarguments[2])

Read data from an excel file

data = pd.read_excel(r'" + excellnputFile, header=4)
#
Input data from excel sheet columns

dfP = pd.DataFrame(data, columns=["Procedure"])
dfP = dfP.ilocl:, :].values.tolist()
dfP = [x for y in dfP for x in y]

Appendix 1 to Rozario D, Rozario N. Can machine learning optimize the efficiency of the
operating room in the era of COVID19? Can J Surg 2020.

DOI: 10.1603/cjs.016520

Online appendices are unedited and posted as supplied by the authors.
dfD = pd.DataFrame(data, columns=['Date"])

dfD = dfD.get_values()

dfD = [x for y in dfD for x in y]

dfE = pd.DataFrame(data, columns=["Book Dur"])
dfk = dfE.ilocl;, :].values.tolist()
dfE = [x for y in dfE for x in y]

dfA = pd.DataFrame(data, columns=["Actual Dur"])
dfA = dfA.ilocl:, :].values.tolist()
dfA =[x for y in dfA for x in vy]

rawProcedures = [] # a list of each procedure performed

procedurelypes = [| # a list of all the procedure codes

rawDays =[] # a list of dates for each procedure performed

days =[] # a list of the dates in the data

rawExpectedTimes = [] # a list of scheduled times for each procedure performed
rawActualTimes = [] # a list of actual times for each procedure performed

Input data into arrays
for i in range(len(dfE)):
if str(dfE[i]) = 'nan":
if dfDIli] not in days:
days.append(dfDIi])
rawExpectedTimes.append(dfE[i])
rawDays.append(dfDli])
rawActualTimes.append(dfAli])
rawProcedures.append(dfPli])
if dfPli] not in procedureTypes:
procedureTypes.append(dfPli])

procedureTypes.sort() # sort procedure types alphabetically

proceduresPerDay = {w: [] for w in days} #a map from a day to a list of procedures

performed on that day

for i in rangef{len(rawDays)):
proceduresPerDayl[rawDayslill.append(rawProceduresli])

expectedTimes = {w: [] for w in days} # a map from a day to a list of booking times for that
day
for iin range(len(rawDays)):

expectedTimes[rawDayslill.append(rawExpectedTimeslil)

actualTimes = {w: [] for w in days} # a map from a day to a list of actual procedure times for
that day
for i in range(len(rawDays)):

Appendix 1 to Rozario D, Rozario N. Can machine learning optimize the efficiency of the
operating room in the era of COVID19? Can J Surg 2020.

DOI: 10.1603/cjs.016520

Online appendices are unedited and posted as supplied by the authors.
actualTimes[rawDayslill.append(rawActualTimes]i])

#
Pre-processing

originalBookTimes = {p: 0 for p in procedureTypes} # a map with average booking times for
each procedue
for p in procedureTypes:
counter =0
foriin range(len{rawDays)):
if p == rawProcedureslil:
counter +=1
originalBookTimesl[p] += rawExpectedTimesli]
originalBookTimeslp] = int(originalBookTimes|p] / counter)

expectedTotalTime = {} # a map from a day to the sum of booking times for that day
for day in days:
expectedTotalTime[day] = O
for time in expectedTimes|dayl:
expectedTotalTimelday] += time

actualTotalTime = {} # a map from a day to the sum of actual procedure times for that day
for day in days:
actualTotalTimelday] = 0
for time in actualTimes[day]:
actualTotalTimelday] += time

currentOvertimeCount = 0 # counts how many days the room went overtime
currentUndertimeCount = 0 # counts how many days the room went undertime
for day in days:
if expectedTotalTime[day] + O < actualTotalTime[day]:
currentOvertimeCount += 1
elif actualTotalTimelday] + 15 < expectedTotalTimel[day]:
currentUndertimeCount += 1

minProcedureTime = {p: 1440 for p in procedureTypes} # a map from a procedure to its
minimum case time

maxProcedureTime = {p: 0 for p in procedureTypes} # a map from a procedure to its
maximum case time

for i in range({len{rawDays)):
if rawActualTimesli] < minProcedureTimelrawProcedureslill:

minProcedureTimelrawProcedures|il] = rawActualTimes]i]
if rawActualTimesl[i] > maxProcedureTimel[rawProcedureslill:
maxProcedureTimel[rawProceduresli]] = rawActualTimesli]

count = len{days) # number of days

Appendix 1 to Rozario D, Rozario N. Can machine learning optimize the efficiency of the
operating room in the era of COVID19? Can J Surg 2020.

DOI: 10.1603/cjs.016520

Online appendices are unedited and posted as supplied by the authors.

Model
print("Starting model optimisation”, file=sys.stderr)

Decision variables
model = cp_model.CpModel() # Create the model

procedureSchedulingTimes = {} # Create a decision variable for the scheduling time of each
procedure type
for p in procedureTypes:
procedureSchedulingTimes[p] = model.NewIntVar(intiminProcedureTime[p]),
int(maxProcedureTime[pl),
"orocedureSchedulingTime" + str(p))

totalScheduledTime = {} # The total time scheduled for each day

overtimeTriggers = {} # Set to 1 if overtime for each day

undertimeTriggers = {} # Set to 1 if undertime for each day

for day in days:
totalScheduledTimelday] = model.NewlIntVar(0, 1000, "day" + str(day))
overtimeTriggers[day] = model.NewIntVar(0, 1, "overtimeTrigger" + str(day))
undertimeTriggers[day] = model.NewIntVar(0, 1, "undertimeTrigger" + str{day))

overtimeCount = model.NewIntVar(0, 1000, "overtimeCount") # Number of days that went
overtime

undertimeCount = model.NewlIntVar(0, 1000, "undertimeCount") # Number of days that went
undertime

overtimeCost = model.NewlIntVar(-1000, 1000, "overtimeCost") # Overtime cost
undertimeCost = model.NewIntVar(-1000, 1000, "undertimeCost") # Undertime cost
absOvertimeCost = model.NewIntVar(0, 100, "absOvertimeCost") # |overtime cost|
absUndertimeCost = model.NewIntVar(0, 100, "absUndertimeCost") # |undertime cost|
finalCost = model.NewlIntVar(0, 100, "finalCost"} # final cost is sum of overtime and
undertime costs

#
Constraints
for day in days:
set totalScheduledTime to the sum of scheduled time in a day
model.Add(totalScheduledTimelday] == (sum(procedureSchedulingTimes]i] for i in
proceduresPerDaylday])))

set overtime trigger to 1 if overtime
model. Add{1000 * overtimeTriggers|day] >= int(actualTotalTime[day]) -
totalScheduledTimel[day] - 0 - 1)

Appendix 1 to Rozario D, Rozario N. Can machine learning optimize the efficiency of the
operating room in the era of COVID19? Can J Surg 2020.

DOI: 10.1603/cjs.016520

Online appendices are unedited and posted as supplied by the authors.

set overime trigger to O if not overtime

model. Add(1500 * (1 - overtimeTriggersldayl) >= totalScheduledTimelday] -
int(actualTotalTime[day]) + O)

set undertime trigger to 1 if undertime

model. Add{1000 * undertimeTriggers[day] >= totalScheduledTimel[day] - 15 -
int(actualTotalTimelday]) - 1)

set undertime trigger to 0 if not undertime

model. Add{1000 * (1 - undertimeTriggerslday]) >= int(actualTotalTime[day]) -
totalScheduledTimelday] + 15)

model.Add({overtimeCount == (sum(overtimeTriggers|day] for day in days))) # count how
many days went overtime

model.Add{undertimeCount == (sum{undertimeTriggers[day] for day in days))) # count how
many days went undertime

model. Add({overtimeCost == overtimeCount - int(count * targetOvertimeFrequency))) #
calculate overtime cost

model. Add({undertimeCost == undertimeCount - int{count * targetUndertimeFrequency))) #
calculate undertime cost

calculate absolute value of overtime cost

model. AddAbsEquality(absOvertimeCost, int(overtimeCostWeight) * overtimeCost)

calculate absolute value of undertime cost

model. AddAbsEquality{absUndertimeCost, int(undertimeCostWeight) * undertimeCost)
model. Add({finalCost == overtimeCost + undertimeCost)) # calculate final cost

model.Minimize(finalCost) # Objective is to minimize final cost

solver = cp_model.CpSolver()
print(*Starting to solve', file=sys.stderr)
status = solver.Solve(model)

Print output to console and excel sheet
if status == cp_model. OPTIMAL or status == cp_model.FEASIBLE:
print("Success!")
rows = ['Number of days", "Number of cases", "Original overtime frequency", "Original
undertime frequency", "Model overtime frequency”,
"Model undertime frequency", "Model cases achieved', "Original Overtime Minutes
Used", "Model Overtime Minutes Used",
"Original Overtime Cost", "Model Overtime Cost', "Original OR minutes used", "Model

OR minutes used", ", "Procedure Type'] + procedureTypes

dashboard = pd.DataFrame(index=rows,

Appendix 1 to Rozario D, Rozario N. Can machine learning optimize the efficiency of the
operating room in the era of COVID19? Can J Surg 2020.

DOI: 10.1603/cjs.016520

Online appendices are unedited and posted as supplied by the authors.
Columns:[”A”’ IIBII, IICII’])

for r in rows:
dashboard.at[r, "A'l = r

#
Output basic stats

dashboard.at[", "] ="

dashboard.at['Number of days", "B"] = count

print("number of days: *, count)

dashboard.at['Number of cases’, "B'] = len(rawExpectedTimes)

print("number of cases: ", len{rawExpectedTimes))

dashboard.at["Original overtime frequency”, "B"] = round(currentOvertimeCount / count, 2)

print("current overtime frequency: %.0f% %" % (100 * currentOvertimeCount / count))

dashboard.at["'Original undertime frequency", "B"] = round(currentUndertimeCount / count,
2)

print("current undertime frequency: %.0f% %" % (100 * currentUndertimeCount / count))

dashboard.at["Model overtime frequency’, "B"] = round(solver.Value(overtimeCount) /
count, 2)

print{"model overtime frequency: %.01% %" % (100 * solver.Value(overtimeCount) / count))

dashboard.at["Model undertime frequency", "B"] = round(solver.Value(undertimeCount) /
count, 2)

print{"model undertime frequency: %.0f% %" % (100 * solver.Value(undertimeCount) /
count))

#
Output overtime minutes and overtime cost
originalOverMinutes = 0
modelOverMinutes = 0

originalCost = 0
modelCost = 0

for day in days:
if solver.Value(totalScheduledTime[day]) < actualTotalTimeldayl:
modelOverMinutes += actualTotalTime[day] - solver.Value(totalScheduledTime[day])
modelCost += math.ceil((actualTotalTime[day] -
solver.Value(totalScheduledTimel[day])) / overtimeBlockLength) * noOfNursesPerBlock *
overtimeSalary
if expectedTotalTimel[day] < actualTotalTimeldayl:
originalOverMinutes += actualTotalTimel[day] - expectedTotalTime[day]
originalCost += math.ceil({(actualTotalTime[day] - expectedTotalTimelday]) /
overtimeBlockLength) * noOfNursesPerBlock * overtimeSalary

print("Original overtime minutes used: ", originalOverMinutes)

Appendix 1 to Rozario D, Rozario N. Can machine learning optimize the efficiency of the
operating room in the era of COVID19? Can J Surg 2020.

DOI: 10.1603/cjs.016520

Online appendices are unedited and posted as supplied by the authors.
dashboard.at['Original Overtime Minutes Used", "B"] = originalOverMinutes
print("Model overtime minutes used: ", modelOverMinutes)
dashboard.at['Model Overtime Minutes Used", "B"] = modelOverMinutes

print("Original overtime cost: ", originalCost)
dashboard.at['Original Overtime Cost", "B"] = originalCost
print(*"Model overtime cost: *, modelCost)
dashboard.at["Model Overtime Cost", "B"] = modelCost

print("\n")

#
Qutput original and machine learning scheduling times for each procedure
dashboard.at['Procedure Type", "B"] = "Original Time"
dashboard.at["Procedure Type", "C"] = "Machine Learning Time"
for p in procedureTypes:
print(p + "1 " + "%d" % solver.Value{procedureSchedulingTimes|pl))
dashboard.at[p, "B"] = originalBookTimes|[p]
dashboard.at[p, "C"] = solver.Value({procedureSchedulingTimeslp])

#
Output cases completed with model and OR minutes used by original and machine
learning methods

totalNoCases = 0

originalCases = 0

modelCases = 0

originalMinutes = 0

modelMinutes = 0

totalMinutes = 0

print("\n")

for day in days:
noOfCases = len(actualTimes[day])
totalNoCases += noOfCases

originalMinutes += actualTotalTime[day]
modelMinutes += solver.Value(totalScheduledTime[day])

ORTime = 450 - (noOfCases - 1) * 15
totalMinutes += ORTime

originalTime = (ORTime - actualTotalTime[day])
modelTime = (ORTime - solver.Value(totalScheduledTimelday]))
originalCases += noOfCases
if originalTime < O:
for i in reversed({range(len(actualTimes[dayl))):
originalTime += actualTimes[day]li]

Appendix 1 to Rozario D, Rozario N. Can machine learning optimize the efficiency of the
operating room in the era of COVID19? Can J Surg 2020.

DOI: 10.1603/cjs.016520

Online appendices are unedited and posted as supplied by the authors.
originalCases -=
if originalTime > 0:
break
modelCases += noOfCases
if modelTime < 0:
for i in reversed({range(len(actualTimes[dayl))):
modelTime += actualTimesl[day][i]
modelCases -=
if modelTime > 0:
break

print("Cases achieved with machine learning model: %.0f% %" % (100 * modelCases /
totalNoCases))

dashboard.at["Model cases achieved", "B"l = round(modelCases / totalNoCases, 2)
print("OR minutes used with original model: %.0f% %" % (100 * originalMinutes /
totalMinutes))

dashboard.at['Original OR minutes used", "B"] = round(originalMinutes / totalMinutes, 2)
print("OR minutes used with machine learning model: %.0f% %" % (100 * modelMinutes /

totalMinutes))
dashboard.at["Model OR minutes used", "B"] = round(modelMinutes / totalMinutes, 2)
dashboard.to_excel(r' + excelOutputFile, index=False)

else:

print("No feasible solution found.")

Appendix 1 to Rozario D, Rozario N. Can machine learning optimize the efficiency of the operating room in the era of COVID19? Can J Surg 2020.

DOI: 10.1503/cjs.016520

Online appendices are unedited and posted as supplied by the authors.
Surgery Division 1 2017 - 2019

155 135 176 154 194 183 140
847 444 733 703 753 655 567
99.00% 95.67% 94.67% 91.67% 91.33% 93.00% 96.33%

Original ML Model Original ML Model Original ML Model Original ML Model Original ML Model Original Machine Learning Original ML Model
13.33% 21.33% 48.67% 20.67% 32.67% 21.67% 55.33% 28.00% 54.67% 22.33% 58.33% 25.00% 47.33% 27.67%
74.00% 17.00% 31.00% 13.00% 56.67% 14.33% 35.33% 10.00% 30.00% 24.67% 27.33% 15.33% 40.33% 10.67%
623 1586 2933 2127 2200 2825 3926 2525 4997 3303 5041 2525 3066 2757
$9937.50 $26250.00 $42750.00 $32437.50 $33375.00 $42000.00 $56812.50 $39187.50 $72000.00 $48562.50 $73312.50 $39750.00 $44625.00 $40312.50

75.00%

76.33%

71.67%

71.67%

73.67%

73.00%

88.33%

86.67%

81.67%

83.00%

76.67%

77.00%

76.67%

74.67%

Appendix 1 to Rozario D, Rozario N. Can machine learning optimize the efficiency of the operating room in the era of COVID19? Can J Surg 2020.

DOI: 10.1503/cjs.016520

Online appendices are unedited and posted as supplied by the authors.
Procedure 26 37 35

46

46

37

33

Appendix 1 to Rozario D, Rozario N. Can machine learning optimize the efficiency of the operating room in the era of COVID19? Can J Surg 2020.

DOI: 10.1503/cjs.016520

Online appendices are unedited and posted as supplied by the authors.
Surgery Division 2 2017 - 2019

201 230 232 308 253 70 304 240
946 758 552 1161 879 173 821 561
99.00% 99.33% 99.33% 100.00% 98.67% 97.00% 100.00% 95.00%

Original ML Model Original ML Model Original ML Model Original ML Model Original ML Model Original ML Model Original ML Model Original ML Model
45.67% 29.00% 46.00% 27.67% 36.33% 25.00% 57.33% 38.00% 55.67% 31.33% 53.00% 29.00% 49.33% 34.67% 62.67% 19.67%
33.67% 20.33% 32.67% 18.00% 45.00% 19.00% 19.33% 19.67% 31.67% 19.00% 33.00% 19.00% 30.00% 21.67% 22.33% 23.33%
2121 1850 2481 2027 2379 2093 3449 2852 4738 3311 1626 986 3079 2965 7980 4558
$35062.50 $30562.50 $41250.00 $35812.50 $38625.00 $34312.50 $60187.50 $48562.50 $72562.50 $52312.50 $23437.50 $15562.50 $53250.00 $48750.00 $113250.00 $68250.00

80.67%

81.00%

81.33%

82.00%

58.33%

58.67%

62.00%

62.00%

77.33%

77.33%

61.00%

60.00%

59.33%

60.00%

59.67%

61.67%

Appendix 1 to Rozario D, Rozario N. Can machine learning optimize the efficiency of the operating room in the era of COVID19? Can J Surg 2020.

DOI: 10.1503/cjs.016520

Online appendices are unedited and posted as supplied by the authors.
Procedure 36 130 97 139 125 137 144

Procedure 37 54 52 60 50 85 93 47 51

