RT Journal Article SR Electronic T1 Robotically applied hemostatic clamping for care-under-fire: harnessing bomb robots for hemorrhage control JF Canadian Journal of Surgery JO CAN J SURG FD Canadian Medical Association SP E242 OP E249 DO 10.1503/cjs.009920 VO 65 IS 2 A1 Andrew W. Kirkpatrick A1 Ian A. McKee A1 Brian Knudsen A1 Ryan Shelton A1 Anthony J. LaPorta A1 Juan Wachs A1 Jessica L. McKee YR 2022 UL http://canjsurg.ca/content/65/2/E242.abstract AB Background: Early hemorrhage control after interpersonal violence is the most urgent requirement to preserve life and is now recognized as a responsibility of law enforcement. Although earlier entry of first responders is advocated, many shooting scenes remain unsafe for humans, necessitating first responses conducted by robots. Thus, robotic hemorrhage control warrants study as a care-under-fire treatment option.Methods: Two bomb disposal robots (Wolverine and Dragon Runner) were retrofitted with hemostatic wound clamps. The robots’ ability to apply a wound clamp to a simulated extremity exsanguination while controlled by 4 experienced operators was tested. The operators were randomly assigned to perform 10 trials using 1 robot each. A third surveillance robot (Stair Climber) provided further visualization for the operators. We assessed the success rate of the application of the wound clamp to the simulated wound, the time to application of the wound clamp and the amount of fluid loss. We also assessed the operators’ efforts to apply the wound clamp after an initial attempt was unsuccessful or after the wound clamp was dropped.Results: Remote robotic application of a wound clamp was demonstrated to be feasible, with complete cessation of simulated bleeding in 60% of applications. This finding was consistent across all operators and both robots. There was no difference in the success rates with the 2 robots (p = 1.00). However, there were differences in fluid loss (p = 0.004) and application time (p < 0.001), with the larger (Wolverine) robot being faster and losing less fluid.Conclusion: Law enforcement tactical robots were consistently able to provide partial to complete hemorrhage control in a simulated extremity exsanguination. Consideration should be given to using this approach in care-under-fire and care-behind-the-barricade scenarios as well as further developing the technology and doctrine for robotic hemorrhage control.