Skip to main content
Log in

History of cardiac computed tomography: single to 320-detector row multislice computed tomography

  • Original Paper
  • Published:
The International Journal of Cardiovascular Imaging Aims and scope Submit manuscript

Abstract

Since the introduction of computed tomography (CT) over 30 years ago, the challenge of imaging the beating heart has been a driving force in the innovation of cardiac CT. Imaging the anatomy and physiology of the heart demands temporal, spatial and contrast resolution is arguably greater than for any other organ system in the body. Great progress has been achieved in using CT to evaluate coronary artery stenosis and plaque composition. In addition, techniques to evaluate cardiac function, including myocardial perfusion, regional ventricular wall motion, systolic thickening, ejection fraction, valve function, and congenital cardiac abnormalities are also gaining a foothold in clinical practice as adjuncts to or replacements for invasive coronary angiography, cardiac single photon emission CT (SPECT) imaging, ultrasound and magnetic resonance imaging (MRI). This review summarizes the major accomplishments and future directions in this field, with emphasis on developments over the past 10 years.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Mackay J, Mensah G (2004) Atlas of heart disease and stroke. WHO Press, Geneva

    Google Scholar 

  2. Stanford W (2005) Past, present and future. In: Schoepf UJ (ed) CT of the heart. Humana Press, Totowa, pp 3–12

    Google Scholar 

  3. Ferencik M, Nieman K, Achenbach S (2006) Noncalcified and calcified coronary plaque detection by contrast-enhanced multi-detector computed tomography: a study of interobserver agreement. J Am Coll Cardiol 47(1):207–209. doi:10.1016/j.jacc.2005.10.005

    Article  PubMed  Google Scholar 

  4. Leber AW, Becker A, Knez A et al (2006) Accuracy of 64-slice computed tomography to classify and quantify plaque volumes in the proximal coronary system: a comparative study using intravascular ultrasound. J Am Coll Cardiol 47(3):672–677. doi:10.1016/j.jacc.2005.10.058

    Article  PubMed  Google Scholar 

  5. Pohle K, Achenbach S, Macneill B et al (2007) Characterization of non-calcified coronary atherosclerotic plaque by multi-detector row CT: comparison to IVUS. Atherosclerosis 190(1):174–180. doi:10.1016/j.atherosclerosis.2006.01.013

    Article  PubMed  CAS  Google Scholar 

  6. Hounsfield GN (1973) Computerized transverse axial scanning (tomography). 1. Description of system. Br J Radiol 46(552):1016–1022

    Article  PubMed  CAS  Google Scholar 

  7. Sagel SS, Weiss ES, Gillard RG et al (1977) Gated computed tomography of the human heart. Invest Radiol 12(6):563–566. doi:10.1097/00004424-197711000-00019

    Article  PubMed  CAS  Google Scholar 

  8. Boyd DP, Lipton MJ (1983) Cardiac computed tomography. Proc IEEE 71:298–307. doi:10.1109/PROC.1983.12588

    Article  Google Scholar 

  9. Hill DG (2005) Electron beam CT of the heart. In: Schoepf UJ (ed) CT of the heart. Humana Press, Totowa, pp 15–21

    Google Scholar 

  10. Jorgensen SM, Whitlock SV, Thomas PJ et al (1989) A programmable real-time digital recording CCD based video camera. Electron Imaging East 2:738–740 (International Electronic Imaging Exposition and Conference)

    Google Scholar 

  11. Ritman E, Robb R, Harris L (1985) Imaging physiological functions: experience with the DSR. Philadelphia, Praeger

    Google Scholar 

  12. Lipton MJ, Higgins CB, Boyd DP (1985) Computed tomography of the heart: evaluation of anatomy and function. J Am Coll Cardiol 5(suppl 1):55S–69S

    Article  PubMed  CAS  Google Scholar 

  13. Achenbach S, Moshage W, Ropers D et al (1998) Value of electron-beam computed tomography for the noninvasive detection of high-grade coronary-artery stenoses and occlusions. N Engl J Med 339(27):1964–1971. doi:10.1056/NEJM199812313392702

    Article  PubMed  CAS  Google Scholar 

  14. Moshage WE, Achenbach S, Seese B et al (1995) Coronary artery stenoses: three-dimensional imaging with electrocardiographically triggered, contrast agent-enhanced, electron-beam CT. Radiology 196(3):707–714

    PubMed  CAS  Google Scholar 

  15. Lipton MJ, Brundage BH, Higgins CB et al (1983) CT scanning of the heart. Cardiovasc Clin 13(3):385–401

    PubMed  CAS  Google Scholar 

  16. Kalender WA, Seissler W, Klotz E et al (1990) Spiral volumetric CT with single-breath-hold technique, continuous transport, and continuous scanner rotation. Radiology 176(1):181–183

    PubMed  CAS  Google Scholar 

  17. Mochizuki T, Murase K, Higashino H et al (2000) Two- and three-dimensional CT ventriculography: a new application of helical CT. AJR Am J Roentgenol 174(1):203–208

    PubMed  CAS  Google Scholar 

  18. Mochizuki T, Murase K, Koyama Y et al (1999) LAD stenosis detected by subsecond spiral CT. Circulation 99(11):1523

    PubMed  CAS  Google Scholar 

  19. Mochizuki T, Koyama Y, Tanaka H et al (1998) Images in cardiovascular medicine. Left ventricular thrombus detected by two- and three-dimensional computed tomographic ventriculography: a new application of helical CT. Circulation 98(9):933–934

    PubMed  CAS  Google Scholar 

  20. Mochizuki T, Murase K, Higashino H et al (1999) Images in cardiovascular medicine. Demonstration of acute myocardial infarction by subsecond spiral computed tomography: early defect and delayed enhancement. Circulation 99(15):2058–2059

    PubMed  CAS  Google Scholar 

  21. Mochizuki T, Ohtani T, Higashino H et al (2000) Tricuspid atresia with atrial septal defect, ventricular septal defect, and right ventricular hypoplasia demonstrated by multidetector computed tomography. Circulation 102(20):E164–E165

    PubMed  CAS  Google Scholar 

  22. Nieman K, Oudkerk M, Rensing BJ et al (2001) Coronary angiography with multi-slice computed tomography. Lancet 357(9256):599–603. doi:10.1016/S0140-6736(00)04058-7

    Article  PubMed  CAS  Google Scholar 

  23. Hoffmann U, Moselewski F, Nieman K et al (2006) Noninvasive assessment of plaque morphology and composition in culprit and stable lesions in acute coronary syndrome and stable lesions in stable angina by multidetector computed tomography. J Am Coll Cardiol 47(8):1655–1662. doi:10.1016/j.jacc.2006.01.041

    Article  PubMed  Google Scholar 

  24. Gregory SA, Ferencik M, Achenbach S et al (2006) Comparison of sixty-four-slice multidetector computed tomographic coronary angiography to coronary angiography with intravascular ultrasound for the detection of transplant vasculopathy. Am J Cardiol 98(7):877–884. doi:10.1016/j.amjcard.2006.04.027

    Article  PubMed  Google Scholar 

  25. Rixe J, Achenbach S, Ropers D et al (2006) Assessment of coronary artery stent restenosis by 64-slice multi-detector computed tomography. Eur Heart J 27(21):2567–2572. doi:10.1093/eurheartj/ehl303

    Article  PubMed  Google Scholar 

  26. Pugliese F, Cademartiri F, van Mieghem C et al (2006) Multidetector CT for visualization of coronary stents. Radiographics 26(3):887–904. doi:10.1148/rg.263055182

    Article  PubMed  Google Scholar 

  27. Ropers D, Pohle FK, Kuettner A et al (2006) Diagnostic accuracy of noninvasive coronary angiography in patients after bypass surgery using 64-slice spiral computed tomography with 330-ms gantry rotation. Circulation 114(22):2334–2341. doi:10.1161/CIRCULATIONAHA.106.631051

    Article  PubMed  Google Scholar 

  28. Anders K, Baum U, Schmid M et al (2006) Coronary artery bypass graft (CABG) patency: assessment with high-resolution submillimeter 16-slice multidetector-row computed tomography (MDCT) versus coronary angiography. Eur J Radiol 57(3):336–344. doi:10.1016/j.ejrad.2005.12.018

    Article  PubMed  Google Scholar 

  29. Koyama Y, Matsuoka H, Mochizuki T et al (2005) Assessment of reperfused acute myocardial infarction with two-phase contrast-enhanced helical CT: prediction of left ventricular function and wall thickness. Radiology 235(3):804–811. doi:10.1148/radiol.2353030441

    Article  PubMed  Google Scholar 

  30. Baks T, Cademartiri F, Moelker A et al (2006) Multislice computed tomography and magnetic resonance imaging for the assessment of reperfused acute myocardial infarction. J Am Coll Cardiol 48(1):144–152. doi:10.1016/j.jacc.2006.02.059

    Article  PubMed  Google Scholar 

  31. Nieman K, Shapiro MD, Ferencik M et al (2008) Reperfused myocardial infarction: contrast-enhanced 64-section CT in comparison to MR imaging. Radiology 247(1):49–56

    Article  PubMed  Google Scholar 

  32. Koyama Y, Mochizuki T, Higaki J (2004) Computed tomography assessment of myocardial perfusion, viability, and function. J Magn Reson Imaging 19(6):800–815. doi:10.1002/jmri.20067

    Article  PubMed  Google Scholar 

  33. Nagao M, Matsuoka H, Kawakami H et al (2008) Quantification of myocardial perfusion by contrast-enhanced 64-MDCT: characterization of ischemic myocardium. Am J Roentogenol 191(1):19–25. doi:10.2214/AJR.07.2929

    Article  Google Scholar 

  34. Ruzsics B, Lee H, Powers ER et al (2008) Images in cardiovascular medicine. Myocardial ischemia diagnosed by dual-energy computed tomography: correlation with single-photon emission computed tomography. Circulation 117(9):1244–1245. doi:10.1161/CIRCULATIONAHA.107.745711

    Article  PubMed  Google Scholar 

  35. Haraikawa T, Higashino H, Sugawara Y et al (2006) Assessment of left ventricular wall motion using 16-channel multislice computed tomography: comparison with left ventriculography. Radiat Med 24(3):159–164. doi:10.1007/s11604-005-1468-6

    Article  PubMed  Google Scholar 

  36. Hosoi S, Mochizuki T, Miyagawa M et al (2003) Assessment of left ventricular volumes using multi-detector row computed tomography (MDCT): phantom and human studies. Radiat Med 21(2):62–67

    PubMed  Google Scholar 

  37. Higashino H, Mochizuki T, Haraikawa T et al (2006) Image fusion of coronary tree and regional cardiac function image using multislice computed tomography. Circ J 70(1):105–109. doi:10.1253/circj.70.105

    Article  PubMed  Google Scholar 

  38. Leber AW, Knez A, von Ziegler F et al (2005) Quantification of obstructive and nonobstructive coronary lesions by 64-slice computed tomography: a comparative study with quantitative coronary angiography and intravascular ultrasound. J Am Coll Cardiol 46(1):147–154. doi:10.1016/j.jacc.2005.03.071

    Article  PubMed  Google Scholar 

  39. Mollet NR, Cademartiri F, van Mieghem CA et al (2005) High-resolution spiral computed tomography coronary angiography in patients referred for diagnostic conventional coronary angiography. Circulation 112(15):2318–2323. doi:10.1161/CIRCULATIONAHA.105.533471

    Article  PubMed  Google Scholar 

  40. Raff GL, Gallagher MJ, O’Neill WW et al (2005) Diagnostic accuracy of noninvasive coronary angiography using 64-slice spiral computed tomography. J Am Coll Cardiol 46(3):552–557. doi:10.1016/j.jacc.2005.05.056

    Article  PubMed  Google Scholar 

  41. Hausleiter J, Meyer T, Hadamitzky M et al (2006) Radiation dose estimates from cardiac multislice computed tomography in daily practice: impact of different scanning protocols on effective dose estimates. Circulation 113(10):1305–1310. doi:10.1161/CIRCULATIONAHA.105.602490

    Article  PubMed  Google Scholar 

  42. Lerner CB, Frush DP, Boll DT (2008) Evaluation of a coronary-cameral fistula: benefits of coronary dual-source MDCT angiography in children. Pediatr Radiol 38(8):874–878. doi:10.1007/s00247-008-0906-x

    Article  PubMed  Google Scholar 

  43. Flohr TG, McCollough CH, Bruder H et al (2006) First performance evaluation of a dual-source CT (DSCT) system. Eur Radiol 16(2):256–268. doi:10.1007/s00330-005-2919-2

    Article  PubMed  Google Scholar 

  44. Achenbach S, Ropers D, Kuettner A et al (2006) Contrast-enhanced coronary artery visualization by dual-source computed tomography–initial experience. Eur J Radiol 57(3):331–335. doi:10.1016/j.ejrad.2005.12.017

    Article  PubMed  Google Scholar 

  45. Brodoefel H, Kramer U, Reinmann A et al (2007) Dual-source CT with improved temporal resolution in assessment of left ventricular function: a pilot study. AJR Am J Roentgenol 189(5):1064–1070. doi:10.2214/AJR.07.2228

    Article  PubMed  Google Scholar 

  46. Kido T, Kurata A, Higashino H et al (2007) Cardiac imaging using 256-detector row four-dimensional CT: preliminary clinical report. Radiat Med 25(1):38–44. doi:10.1007/s11604-006-0097-z

    Article  PubMed  Google Scholar 

  47. Motoyama S, Anno H, Sarai M et al (2008) Noninvasive coronary angiography with a prototype 256-row area detector computed tomography system: comparison with conventional invasive coronary angiography. J Am Coll Cardiol 51(7):773–775. doi:10.1016/j.jacc.2007.09.062

    Article  PubMed  Google Scholar 

  48. Nieman K, Rensing BJ, van Geuns RJ et al (2002) Non-invasive coronary angiography with multislice spiral computed tomography: impact of heart rate. Heart 88(5):470–474. doi:10.1136/heart.88.5.470

    Article  PubMed  CAS  Google Scholar 

  49. Ropers D, Baum U, Pohle K et al (2003) Detection of coronary artery stenoses with thin-slice multi-detector row spiral computed tomography and multiplanar reconstruction. Circulation 107(5):664–666. doi:10.1161/01.CIR.0000055738.31551.A9

    Article  PubMed  Google Scholar 

  50. Ropers D, Rixe J, Anders K et al (2006) Usefulness of multidetector row spiral computed tomography with 64- × 0.6-mm collimation and 330-ms rotation for the noninvasive detection of significant coronary artery stenoses. Am J Cardiol 3:343–348. doi:10.1016/j.amjcard.2005.08.050

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Teruhito Mochizuki.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hurlock, G.S., Higashino, H. & Mochizuki, T. History of cardiac computed tomography: single to 320-detector row multislice computed tomography. Int J Cardiovasc Imaging 25 (Suppl 1), 31–42 (2009). https://doi.org/10.1007/s10554-008-9408-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10554-008-9408-z

Keywords

Navigation