Skip to main content

Advertisement

Log in

Cobalt–chromium toxic retinopathy case study

  • Clinical Case Report
  • Published:
Documenta Ophthalmologica Aims and scope Submit manuscript

Abstract

Purpose

To report the clinical case of a 65-year-old male who developed retinal dysfunction following cobalt–chromium toxicity.

Methods

A review of the clinical, haematological, radiological and electrophysiological investigations into a single patient was performed in order to form a case report.

Results

A 65-year-old male presented to his ophthalmologist with a 1-year history of worsening vision on the background of a multisystem illness including motor axonopathy, pericardiomyopathy and bulbar palsy. His medical history included hypertension, hypercholesterolaemia and a metallic hip prosthesis. Ocular examination revealed significantly reduced visual acuity bilaterally along with very poor colour vision. Cornea, fundi and optic discs all appeared normal. Bilateral moderate nuclear sclerosis was noted. Basic investigations including mitochondrial studies, auto-immune screen and MRI of brain were unremarkable. Further investigations showed significantly elevated plasma cobalt and chromium levels. Electrophysiological studies revealed an abnormality in all phases of the ERG including a negative b-waveform, suggestive of inner retinal pathology. Following subsequent revision of the hip, cobalt and chromium levels decreased and the patient’s vision improved. Further electrophysiological testing indicates a persistent ERG abnormality despite a significant improvement in both the patient’s visual acuity and colour vision.

Conclusions

These results suggest that cobalt–chromium toxicity can cause inner retinal dysfunction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Varela-Moreiras G, Murphy MM, Scott JM (2009) Cobalamin, folic acid, and homocysteine. Nutr Rev 67:S67–S72

    Article  Google Scholar 

  2. Catalani S, Rizzetti MC, Padovani A, Apostoli P (2012) Neurotoxicity of cobalt. Hum Exp Toxicol 31(5):421–437

    Article  PubMed  CAS  Google Scholar 

  3. Travacio M, Polo J, Llesuy S (2001) Chromium(VI) induces oxidative stress in the mouse brain. Toxicology 162:139–148

    Article  PubMed  CAS  Google Scholar 

  4. Dayan A, Paine A (2001) Mechanisms of chromium toxicity, carcinogenicity and allergenicity: review of the literature from 1985 to 2000. Hum Exp Toxicol 20:439–451

    Article  PubMed  CAS  Google Scholar 

  5. Costa M, Klein C (2006) Toxicity and carcinogenicity of chromium compounds in humans. Crit Rev Toxicol 36:155–163

    Article  PubMed  CAS  Google Scholar 

  6. Qi W, Reiter R, Tan D, Manchester L, Siu A, Garcia J (2000) Increased levels of oxidatively damaged DNA induced by chromium(III) and H202: protection by melatonin and related molecules. J Pineal Res 29:54–61

    Article  PubMed  CAS  Google Scholar 

  7. Isaac GH, Siebel T, Oakeshott RD, McLennan-Smith R, Cobb AG, Schmalzried TP, Vail TP (2009) Changes in whole blood metal ion levels following resurfacing: serial measurements in a multi-centre study. Hip Int 19:330–337

    PubMed  Google Scholar 

  8. Tower S (2010) Arthroprosthetic cobaltism: identification of the at-risk patient. Alaska Med 52:28–32

    PubMed  Google Scholar 

  9. Sadler PJ, Tucker A, Viles JH (1994) Involvment of a lysine residue in the N-terminal Ni2+ and Cu2+ binding site of serum albumins. Comparison with Co2+, Cd2+ and Al3+. Eur J Biochem 220:193–200

    Article  PubMed  CAS  Google Scholar 

  10. Catalani S, Leone R, Rizzetti MC, Padovani A, Apostoli P (2011) The role of albumin in human toxicology of cobalt: contribution from a clinical case. ISRN Hematol Vol 2011: Article ID 690620

  11. Gallemore RP, Steinberg RH (1991) Cobalt increases photoreceptor-dependent responses of the chick retinal pigment epithelium. Invest Ophthalmol Vis Sci 32(12):3041–3052

    PubMed  CAS  Google Scholar 

  12. Karovic O, Tonazzini I, Rebola N, Edstrom E, Lovdahl C, Fredholm B, Dare E (2007) Toxic effects of cobalt in primary cultures of mouse astrocytes: similarities with hypoxia and role of HIF-1. Biochem Pharmacol 73:694–708

    Article  PubMed  CAS  Google Scholar 

  13. Brown M, Voljavec A, Lott M, Macdonald I, Wallace D (1992) Leber’s hereditary optic neuropathy: a model for mitochondrial neurodegenerative diseases. FASEB J 6:2791–2799

    PubMed  CAS  Google Scholar 

  14. Seghizzi P, D’Adda F, Borleri D, Barbic F, Mosconi G (1994) Cobalt myocardiopathy: a critical review of literature. Sci Total Environ 150:105–109

    Article  PubMed  CAS  Google Scholar 

  15. Carelli V, Ross-Cisneros F, Sadun A (2004) Mitochondrial dysfunction as a cause of optic neuropathies. Progr Retinal Eye Res 23:53–89

    Article  CAS  Google Scholar 

  16. Hara A, Niwa M, Aoki H, Kumada M, Kunisada T, Oyama T, Yamamoto T, Kozawa O, Mori H (2006) A new model of retinal photoreceptor cell degeneration induced by a chemical hypoxia-mimicking agent, cobalt chloride. Brain Res 1109:192–200

    Article  PubMed  CAS  Google Scholar 

  17. Meecham HM, Humphrey P (1991) Industrial exposure to cobalt causing optic atrophy and nerve deafness: a case report. J Neurol Neurosurg Psychiatry 54:374–375

    Article  PubMed  CAS  Google Scholar 

  18. Licht A, Oliver M, Rachmilewitz E (1972) Optic atrophy following treatment with cobalt chloride in a patient with pancytopenia and hypercellular marrow. Isr J Med Sci 8:61–66

    PubMed  CAS  Google Scholar 

  19. Bhardwaj N, Perez J, Peden M (2011) Optic neuropathy from cobalt toxicity in a patient who ingested cattle magnets. Neuro-ophthalmology 35(1):24–26

    Article  Google Scholar 

  20. Steens W, von Foerster G, Katzer A (2006) Severe cobalt poisoning with loss of sight after ceramic-metal pairing in a hip—a case report. Acta Orthopedica 77(5):830–832

    Article  Google Scholar 

  21. Tower S (2010) Arthroprosthetic cobaltism: neurological and cardiac manifestations in two patients with metal-on-metal arthroplasty. J Bone Joint Surg 92:2847–2851

    Article  PubMed  Google Scholar 

  22. Rizzetti MC, Liberini P, Zarattini G, Catalani S, Pazzaglia U, Apostoli P, Padovani A (2009) Loss of sight and sound. Could it be the hip? Lancet 373:1052

    Article  PubMed  Google Scholar 

  23. Rizzetti MC, Catalani S, Apostoli P, Padovani A (2011) Cobalt toxicity after total hip replacement: a neglected adverse affect? Muscle Nerve 43(1):146–147

    Article  PubMed  Google Scholar 

  24. Alagna G, D’Acquino S (1956) Alterazioni oculari da cloruro di cobalto. Archivio di Ottalmologia 60:5–29

    Google Scholar 

  25. Monies A, Prost M (1994) Experimental studies on lesions of eye tissues in cobalt intoxication. Klin Oczna 96:135–139

    PubMed  CAS  Google Scholar 

  26. Yuan L, Yang X (1997) Selective suppression of rod signal transmission by cobalt ions of low levels in carp retina. Sci China Ser C 40(2):128–136

    Article  CAS  Google Scholar 

  27. Evans J, Hood D, Holtzman E (1978) Differential effects of cobalt ions on rod and cone synaptic activity in the isolated frog retina. Vis Res 18:145–151

    Article  PubMed  CAS  Google Scholar 

  28. Dong C, McReynolds J, Qian H (1990) Time-dependent differential effects of cobalt ions on rod- and cone-driven responses in the isolated frog retina. Vis Neurosci 4(4):359–365

    Article  PubMed  CAS  Google Scholar 

  29. Khosla PK, Murthy KS, Tewari HK (1987) Retinal toxicity of trace elements. Indian J Ophthalmol 35(5–6):311–314

    PubMed  CAS  Google Scholar 

  30. Wesseling C, Pukkala E, Neuvonen K, Kauppinen T, Boffetta P, Partnanen T (2002) Cancer of the brain and nervous system and occupational exposures in finnish women. JOEM 44(7):663–668

    PubMed  CAS  Google Scholar 

  31. Duckett S (1986) Abnormal deposits of chromium in the pathological human brain. J Neurol Neurosurg Psychiatry 49:296–301

    Article  PubMed  CAS  Google Scholar 

  32. Gibb H, Lees P, Pinsky P, Rooney B (2000) Lung cancer among workers in chromium chemical production. Am J Ind Med 38:115–126

    Article  PubMed  CAS  Google Scholar 

  33. Kirpnick-Sobol Z, Reliene R, Schiestl R (2006) Carcinogenic Cr(VI) and the nutritional supplement Cr(III) induce DNA deletions in yeast and mice. Cancer Res 66(7):3480–3484

    Article  PubMed  CAS  Google Scholar 

  34. Asmatullah S, Shakoori A (1998) Embryotoxic and teratogenic effects of hexavalent chromium in developing chicks of gallus domesticus. Bull Environ Contam Toxicol 61:281–288

    Article  PubMed  CAS  Google Scholar 

  35. Ventura D, Costa MTV, Costa MF, Berezovsky A, Salomao S, Simoes A, Lago M, Pereira L, Faria M, De Souza J, Silveira L (2004) Multifocal and full-field electroretinogram changes associated with color-vision loss in mercury vapor exposure. Vis Neurosci 21:421–429

    Article  PubMed  Google Scholar 

  36. El-Sherbeeny A, Odom J, Smith J (2006) Visual system manifestations due to systemic exposure to mercury. Cutan Ocul Toxicol 25:173–183

    Article  PubMed  CAS  Google Scholar 

  37. Schechner R, Miller B, Merksamer E, Perlman I (1991) A long term follow up of ocular siderosis: quantitative assessment of the electroretinogram. Doc Ophthalmol 76:231–240

    Article  CAS  Google Scholar 

  38. He X, Hahn P, Iacovelli J, Wong R, King C, Bhisitkul R, Massaro-Giordano M, Dunaief J (2007) Iron homeostasis and toxicity in retinal degeneration. Prog Retin Eye Res 26(6):649–673

    Article  PubMed  CAS  Google Scholar 

  39. Nagpal A, Brodie S (2009) Supranormal electroretinogram in a 10-year-old girl with lead toxicity. Doc Ophthalmol 118:163–166

    Article  PubMed  Google Scholar 

  40. Rothenberg S, Schnaas L, Salgado-Valladares M, Casanueva E, Geller A, Hudnell H, Fox D (2002) Increased ERG a- and b-wave amplitudes in 7- to 10-year-old children resulting from prenatal lead exposure. Invest Ophthalmol Vis Sci 43(6):2036–2044

    PubMed  Google Scholar 

  41. Lilienthal H, Kohler K, Turfeld M, Winneke G (1994) Persistent increases in scotopic B-wave amplitudes after lead exposure in monkeys. Exp Eye Res 59:203–209

    Article  PubMed  CAS  Google Scholar 

  42. Fox D, Kala S, Hamilton W, Johnson J, O’Callaghan J (2008) Low-level human equivalent gestational lead exposure produces supernormal scotopic electroretinograms, increased retinal neurogenesis, and decreased retinal dopamine utilization in rats. Environ Health Perspect 116(5):618–625

    Article  PubMed  CAS  Google Scholar 

  43. Audo I, Robson A, Holder G, Moore A (2008) The negative ERG: clinical phenotypes and disease mechanisms of inner retinal dysfunction. Surv Ophthalmol 53:16–40

    Article  PubMed  Google Scholar 

  44. Dahlmann A, McCormack D, Jarrison R (2001) Bilateral hypoperfusion retinopathy. J R Soc Med 94:298–299

    PubMed  CAS  Google Scholar 

  45. Levin L (2001) Method of reducing retinal ganglion cell degeneration. United States Patent, US6291506B1

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Warren Apel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Apel, W., Stark, D., Stark, A. et al. Cobalt–chromium toxic retinopathy case study. Doc Ophthalmol 126, 69–78 (2013). https://doi.org/10.1007/s10633-012-9356-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10633-012-9356-8

Keywords

Navigation