Skip to main content

Advertisement

Log in

Bariatric Surgery in Class I Obesity

A Position Statement from the International Federation for the Surgery of Obesity and Metabolic Disorders (IFSO)

  • Other
  • Published:
Obesity Surgery Aims and scope Submit manuscript

Abstract

Class I obesity conveys an increased risk of comorbidities, impairs physical and mental health-related quality of life, and it is associated to an increased psychosocial burden, particularly in women. The need for effective and safe therapies for class I obesity is great and not yet met by nonsurgical approaches. Eligibility to bariatric surgery has been largely based on body mass index (BMI) cut points and limited to patients with more severe obesity levels. However, obese patients belonging to the same BMI class may have very different levels of health, risk, and impact of obesity on quality of life. Individual patients in class I obesity may have a comorbidity burden similar to, or greater than, patients with more severe obesity. Therefore, the denial of bariatric surgery to a patient with class I obesity suffering from a significant obesity-related health burden and not achieving weight control with nonsurgical therapy simply on the basis of the BMI level does not appear to be clinically justified. A clinical decision should be based on a more comprehensive evaluation of the patient’s current global health and on a more reliable prediction of future morbidity and mortality. After a careful review of available data about safety and efficacy of bariatric surgery in patients with class I obesity, this panel reached a consensus on ten clinical recommendations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Stevens GA, Singh GM, Lu Y, et al. National, regional, and global trends in adult overweight and obesity prevalences. Popul Health Metrics. 2012;10:22.

    Google Scholar 

  2. Sturm R. Increases in morbid obesity in the USA: 2000–2005. Public Health. 2007;121:492–6.

    PubMed Central  PubMed  CAS  Google Scholar 

  3. Malik VS, Willett WC, Hu FB. Global obesity: trends, risk factors and policy implications. Nat Rev Endocrinol. 2013;9:13–27.

    PubMed  Google Scholar 

  4. Flegal KM, Kit BK, Orpana H, et al. Association of all-cause mortality with overweight and obesity using standard body mass index categories: a systematic review and meta-analysis. JAMA. 2013;309:71–82.

    PubMed  CAS  Google Scholar 

  5. Finkelstein EA, Brown DS, Wrage LA, et al. Individual and aggregate years-of-life-lost associated with overweight and obesity. Obesity. 2010;18:333–9.

    PubMed  Google Scholar 

  6. Zheng W, McLerran DF, Rolland B, et al. Association between body-mass index and risk of death in more than 1 million Asians. N Engl J Med. 2011;364:719–29.

    PubMed  CAS  Google Scholar 

  7. WHO. Appropriate body-mass index for Asian populations and its implications for policy and intervention strategies. Lancet. 2004;363:157–63.

    Google Scholar 

  8. Carnethon MR, De Chavez PJ, Biggs ML, et al. Association of weight status with mortality in adults with incident diabetes. JAMA. 2012;308:581–90.

    PubMed Central  PubMed  CAS  Google Scholar 

  9. Jerant A, Franks P. Body mass index, diabetes, hypertension, and short-term mortality: a population-based observational study, 2000–2006. J Am Board Fam Med. 2012;25:422–31.

    PubMed  Google Scholar 

  10. Doehner W, Erdmann E, Cairns R, et al. Inverse relation of body weight and weight change with mortality and morbidity in patients with type 2 diabetes and cardiovascular co-morbidity: an analysis of the PROactive study population. Int J Cardiol. 2012;162:20–6.

    PubMed  Google Scholar 

  11. Kokkinos P, Myers J, Faselis C, et al. BMI-mortality paradox and fitness in African American and Caucasian men with type 2 diabetes. Diabetes Care. 2012;35:1021–7.

    PubMed Central  PubMed  Google Scholar 

  12. Tseng CH. Obesity paradox: differential effects on cancer and noncancer mortality in patients with type 2 diabetes mellitus. Atherosclerosis. 2013;226:186–92.

    PubMed  CAS  Google Scholar 

  13. The Look AHEAD Research Group. Cardiovascular effects of intesive lifestyle intervention in type 2 diabetes. N Engl J Med. 2013;369:145–54.

    Google Scholar 

  14. Pontiroli AE, Morabito A. Long-term prevention of mortality in morbid obesity through bariatric surgery. a systematic review and meta-analysis of trials performed with gastric banding and gastric bypass. Ann Surg. 2011;253:484–7.

    PubMed  Google Scholar 

  15. Amundson DE, Djurkovic S, Matwiyoff GN. The obesity paradox. Crit Care Clin. 2010;26:583–96.

    PubMed  Google Scholar 

  16. Morse SA, Gulati R, Reisin E. The obesity paradox and cardiovascular disease. Curr Hypertens Rep. 2010;12:120–6.

    PubMed  Google Scholar 

  17. Oreopoulos A, Kalantar-Zadeh K, Sharma AM, et al. The obesity paradox in the elderly: potential mechanisms and clinical implications. Clin Geriatr Med. 2009;25:643–59.

    PubMed  Google Scholar 

  18. Colditz GA, Willett WC, Rotnitzky A, et al. Weight gain as a risk factor for clinical diabetes mellitus in women. Ann Intern Med. 1995;122:481–6.

    PubMed  CAS  Google Scholar 

  19. Chan JM, Rimm EB, Colditz GA, et al. Obesity, fat distribution, and weight gain as risk factors for clinical diabetes in men. Diabetes Care. 1994;17:961–9.

    PubMed  CAS  Google Scholar 

  20. Sjöström L. Review of the key results from the Swedish Obese Subjects (SOS) trial: a prospective controlled intervention study of bariatric surgery. J Intern Med. 2013;273:219–34.

    PubMed  Google Scholar 

  21. Lindström D, Ilanne-Parikka P, Peltonen M, et al. Sustained reduction in the incidence of type 2 diabetes by lifestyle intervention: follow-up of the Finnish diabetes prevention study. Lancet. 2006;368:1673–9.

    PubMed  Google Scholar 

  22. Diabetes Prevention Program Research Group. 10-year follow-up of diabetes incidence and weight loss in the diabetes prevention program outcomes study. Lancet. 2009;374:1677–86.

    PubMed Central  Google Scholar 

  23. Nguyen NT, Magno CP, Lane KT, et al. Association of hypertension, diabetes, dyslipidemia, and metabolic syndrome with obesity: findings from the National Health and Nutrition Examination Survey, 1999 to 2004. J Am Coll Surg. 2008;207:928–34.

    PubMed  Google Scholar 

  24. Livingston EH, Chandalia M, Abate N. Do current body mass index criteria for obesity surgery reflect cardiovascular risk? Surg Obes Relat Dis. 2007;3:577–85.

    PubMed  Google Scholar 

  25. Dixon JB. The effect of obesity on health outcomes. Mol Cell Endocrinol. 2010;316:104–8.

    PubMed  CAS  Google Scholar 

  26. Renehan AG, Tyson M, Egger M, et al. Body-mass index and incidence of cancer: a systematic review and meta-analysis of prospective observational studies. Lancet. 2008;371:569–78.

    PubMed  Google Scholar 

  27. Keating CL, Peeters A, Swinburn BA, et al. Utility-based quality of life associated with overweight and obesity: the Australian diabetes, obesity, and lifestyle study. Obesity. 2013;21:652–5.

    PubMed  Google Scholar 

  28. Kolotkin RL, Crosby RD, Pendleton R, et al. Health-related quality of life in patients seeking gastric bypass surgery vs non-treatment-seeking controls. Obes Surg. 2003;13:371–7.

    PubMed  Google Scholar 

  29. Everson SA, Maty SC, Lynch JW, et al. Epidemiologic evidence for the relation between socioeconomic status and depression, obesity, and diabetes. J Psychosom Res. 2002;53:891–5.

    PubMed  Google Scholar 

  30. Colles SL, Dixon JB, O’Brien PE. Binge eating disorder: prevalence and correlates in sub-groups of the Australian population. Asia Pac J Clin Nutr. 2005;14:S109.

    Google Scholar 

  31. McCrea RL, Berger YG, King MB. Body mass index and common mental disorders: exploring the shape of the association and its moderation by age, gender and education. Int J Obes. 2012;36:414–21.

    CAS  Google Scholar 

  32. Seidell JC. Societal and personal costs of obesity. Exp Clin Endocrinol Diabetes. 1998;106:7–9.

    PubMed  CAS  Google Scholar 

  33. Finkelstein EA, Di Bonaventura M, Burgess SM, et al. The costs of obesity in the workplace. J Occup Environ Med. 2010;52:971–6.

    PubMed  Google Scholar 

  34. National Institutes of Health National Institutes of Health. National Heart, Lung and Blood Institute: clinical guidelines on the identification, evaluation and treatment of overweight and obesity in adults. The Evidence Report, June 1998.

  35. National Institute for Health and Clinical Excellence. Obesity. Guidance on the prevention, identification, assessment and management of overweight and obesity in adults and children. NICE Clin Guidelines. 2006;43:1–84.

    Google Scholar 

  36. Avenell A, Brown TJ, McGee MA, et al. What are the long-term benefits of weight reducing diets in adults? A systematic review of randomized controlled trials. J Hum Nutr Diet. 2004;17:317–35.

    PubMed  CAS  Google Scholar 

  37. Tuomilehto J, Lindström D, Eriksson GE, et al. Prevention of type 2 diabetes mellitus by changes in lifestyle among subjects with impaired glucose tolerance. N Engl J Med. 2001;344:1343–50.

    PubMed  CAS  Google Scholar 

  38. Diabetes Prevention Program Research Group. Reduction in the incidence of type 2 diabetes with lifestyle intervention or metformin. N Engl J Med. 2002;346:393–403.

    PubMed Central  Google Scholar 

  39. Rawal LB, Tapp RJ, Williams ED, et al. Prevention of type 2 diabetes and its complications in developing countries: a review. Int J Behav Med. 2012;19:121–33.

    PubMed Central  PubMed  Google Scholar 

  40. The Look AHEAD Research Group. Reduction in weight and cardiovascular disease risk factors in individuals with type 2 diabetes. One-year results of the Look AHEAD trial. Diabetes Care. 2007;30:1374–83.

    Google Scholar 

  41. The Look AHEAD Research Group. Long-term effects of a lifestyle intervention on weight and cardiovascular risk factors in individual with type 2 diabetes mellitus. Four-year results of the Look AHEAD trial. Arch Intern Med. 2010;170:1566–75.

    PubMed Central  Google Scholar 

  42. Gregg EW, Chen H, Wagenknecht LE, et al. Association of an intensive lifestyle intervention with remission of type 2 diabetes. JAMA. 2012;308:2489–96.

    PubMed  CAS  Google Scholar 

  43. Heymsfield SB, van Mierlo CA, van der Knaap HC, et al. Weight management using a meal replacement strategy: meta and pooling analysis from six studies. Int J Obes Relat Metab Disord. 2003;27:537–49.

    PubMed  CAS  Google Scholar 

  44. Chearskul S, Delbridge E, Shulkes A, et al. Effect of weight loss and ketosis on postprandial cholecystokinin and free fatty acid concentrations. Am J Clin Nutr. 2008;87:1238–46.

    PubMed  CAS  Google Scholar 

  45. Mulholland Y, Nicokavoura E, Broom J, et al. Very-low-energy diets and morbidity: a systematic review of longer-term evidence. Br J Nutr. 2012;108:832–51.

    PubMed  CAS  Google Scholar 

  46. Baker S, Jerums PJ. Effects and clinical potential of very-low-calorie diets (VLCDs) in type 2 diabetes. Diabetes Res Clin Pract. 2009;85:235–42.

    PubMed  CAS  Google Scholar 

  47. Anderson JW, Konz EC, Frederich RC, et al. Long-term weight-loss maintenance: a meta-analysis of US studies. Am J Clin Nutr. 2001;74:579–84.

    PubMed  CAS  Google Scholar 

  48. Anderson JW, Vichitbandra S, Qian W, et al. Long-term weight maintenance after an intensive weight-loss program. J Am Coll Nutr. 1999;18:620–7.

    PubMed  CAS  Google Scholar 

  49. Lantz H, Peltonen M, Agren L, et al. Intermittent versus on-demand use of a very low calorie diet: a randomized 2-year clinical trial. J Intern Med. 2003;253:463–71.

    PubMed  CAS  Google Scholar 

  50. Colles SL, Dixon JB, Marks P, et al. Preoperative weight loss with a very-low-energy diet: quantitation of changes in liver and abdominal fat by serial imaging. Am J Clin Nutr. 2006;84:304–11.

    PubMed  CAS  Google Scholar 

  51. Padwal RS, Majumdar SR. Drug treatments for obesity: orlistat, sibutramine, and rimonabant. Lancet. 2007;369:71–7.

    PubMed  CAS  Google Scholar 

  52. Sjöström L, Rissanen A, Andersen T, et al. Randomised placebo-controlled trial of orlistat for weight loss and prevention of weight regain in obese patients. Lancet. 1998;352:167–73.

    PubMed  Google Scholar 

  53. Torgerson JS, Hauptman J, Boldrin MN, et al. XENical in the prevention of Diabetes in Obese Subjects (XENDOS) study. A randomized study of orlistat as an adjunct to lifestyle changes for the prevention of type 2 diabetes in obese patients. Diabetes Care. 2004;27:155–61.

    PubMed  CAS  Google Scholar 

  54. Smith SR, Weissman NJ, Anderson CM, et al. Multicenter, placebo-controlled trial of lorcaserin for weight management. N Engl J Med. 2010;363:245–56.

    PubMed  CAS  Google Scholar 

  55. Gadde KM, Allison DB, Ryan DH, et al. Effects of low-dose, controlled-release, phentermine plus topiramate combination on weight and associated comorbidities in overweight and obese adults (CONQUER): a randomised, placebo controlled, phase 3 trial. Lancet. 2011;377:1341–52.

    PubMed  CAS  Google Scholar 

  56. Garvey WT, Ryan DH, Look M, et al. Two-year sustained weight loss and metabolic benefits with controlled-release phentermine/topiramate in obese and overweight adults (SEQUEL): a randomized, placebo-controlled, phase 3 extension study. Am J Clin Nutr. 2012;95:297–308.

    PubMed Central  PubMed  CAS  Google Scholar 

  57. Greenway FL, Fujioka K, Plodkowski RA, et al. Effect of naltrexone plus bupropion on weight loss in overweight and obese adults (COR-I): a multicentre, randomised, double-blind, placebo-controlled, phase 3 trial. Lancet. 2010;376:595–605.

    PubMed  CAS  Google Scholar 

  58. Apovian C, Aronne L, Rubino D, et al. A randomized, phase 3 trial of Naltrexone SR/Bupropion SR on weight and obesity-related risk factors (COR-II). Obesity (Silver Spring). 2013;21:935–43.

    CAS  Google Scholar 

  59. Nauck M, Frid A, Hermansen K, et al. Efficacy and safety comparison of liraglutide, glimepiride, and placebo, all in combination with metformin, in type 2 diabetes: the LEAD (liraglutide effect and action in diabetes)-2 study. Diabetes Care. 2009;32:84–90.

    PubMed Central  PubMed  CAS  Google Scholar 

  60. Buse JB, Rosenstock J, Sesti G, et al. Liraglutide once a day versus exenatide twice a day for type 2 diabetes: a 26-week randomised, parallel-group, multinational, open-label trial (LEAD-6). Lancet. 2009;374:39–47.

    PubMed  CAS  Google Scholar 

  61. Astrup A, Rössner S, Van Gaal L, et al. Effects of liraglutide in the treatment of obesity: a randomised, double-blind, placebo-controlled study. Lancet. 2009;374:1606–16.

    PubMed  CAS  Google Scholar 

  62. Astrup A, Carraro R, Finer N, et al. Safety, tolerability and sustained weight loss over 2 years with the once-daily human GLP-1 analog, liraglutide. Int J Obes. 2012;36:843–54.

    CAS  Google Scholar 

  63. Genco A, Bruni T, Doldi SB, et al. BioEnterics intragastric balloon: the Italian experience with 2,515 patients. Obes Surg. 2005;15:1161–4.

    PubMed  CAS  Google Scholar 

  64. Verdam FJ, Schouten R, Greve JW, et al. An update on less invasive and endoscopic techniques mimicking the effect of bariatric surgery. J Obes. 2012;2012:597871.

    PubMed Central  PubMed  Google Scholar 

  65. Schouten R, Rijs CS, Bouvy ND, et al. A multicenter, randomized efficacy study of the endobarrier gastrointestinal liner for presurgical weight loss prior to bariatric surgery. Ann Surg. 2010;251:236–43.

    PubMed  Google Scholar 

  66. Sandler BJ, Rumbaut R, Swain CP, et al. Human experience with an endoluminal, endoscopic, gastrojejunal bypass sleeve. Surg Endosc. 2011;25:3028–33.

    PubMed  Google Scholar 

  67. Gastrointestinal surgery for severe obesity. National Institutes of Health consensus development conference draft statement. Obes Surg 1991;1:257–66.

    Google Scholar 

  68. Fried M, Hainer V, Basdevant A, et al. Inter-disciplinary European guidelines on surgery of severe obesity. Int J Obes. 2007;31:569–77.

    CAS  Google Scholar 

  69. Rubino F, Kaplan LM, Schauer PR, et al. The diabetes surgery summit consensus conference recommendations for the evaluation and use of gastrointestinal surgery to treat type 2 diabetes mellitus. Ann Surg. 2010;251:399–405.

    PubMed  Google Scholar 

  70. American Diabetes Association. Summary of revisions for the 2009 clinical practice recommendations. Diabetes Care. 2009;32:S3–5.

    Google Scholar 

  71. Dixon JB, Zimmet P, Alberti KG, et al. Bariatric surgery: an IDF statement for obese type 2 diabetes. Diabet Med. 2011;28:628–42.

    PubMed Central  PubMed  CAS  Google Scholar 

  72. Australian Government - National Health and Medical Research Council - Department of Health and Ageing. Clinical practice guidelines for the management of overweight and obesity in adults, adolescents and children in Australia, 2013.

  73. Mechanick JI, Youdim A, Jones DB, et al. Clinical practice guidelines for the perioperative nutritional, metabolic, and nonsurgical support of the bariatric surgery patient—2013 update: cosponsored by American Association of Clinical Endocrinologists, the Obesity Society, and American Society for Metabolic and Bariatric Surgery. Surg Obes Relat Dis. 2013;9:159–91.

    PubMed  Google Scholar 

  74. ASMBS Clinical Issues Committee. Bariatric surgery in class I obesity (BMI 30–35 kg/m2). Surg Obes Relat Dis. 2013;9:e1–e10.

    Google Scholar 

  75. Müller MJ, Lagerpusch M, Enderle J, et al. Beyond the body mass index: tracking body composition in the pathogenesis of obesity and the metabolic syndrome. Obes Rev. 2012;13:6–13.

    PubMed  Google Scholar 

  76. Okorodudu DO, Jumean MF, Montori VM, et al. Diagnostic performance of body mass index to identify obesity as defined by body adiposity: a systematic review and meta-analysis. Int J Obes. 2010;34:791–9.

    CAS  Google Scholar 

  77. Thomas EL, Frost G, Taylor-Robinson SD, et al. Excess body fat in obese and normal-weight subjects. Nutr Res Rev. 2012;25:150–61.

    PubMed  Google Scholar 

  78. Kragelund C, Omland T. A farewell to body-mass index? Lancet. 2005;366:1589–91.

    PubMed  Google Scholar 

  79. Deurenberg P, Deurenberg-Yap M. Validity of body composition methods across ethnic population groups. Forum Nutr. 2003;56:299–301.

    PubMed  Google Scholar 

  80. Habbu A, Lakkis NM, Dokainish H. The obesity paradox: fact or fiction? Am J Cardiol. 2005;98:944–8.

    Google Scholar 

  81. Fonarow GC, Srikanthan P, Costanzo MR, et al. An obesity paradox in acute heart failure: analysis of body mass index and in hospital mortality for 109,927 patients in the acute decompensated heart failure national registry. Am Heart J. 2007;153:74–81.

    PubMed  Google Scholar 

  82. Oreopoulos A, Padwal R, Kalantar-zadeh K, et al. Body mass index and mortality in heart failure: a meta-analysis. Am Heart J. 2008;156:13–22.

    PubMed  Google Scholar 

  83. Kalantar-Zadeh K, Kopple JD, Kilpatrick RD, et al. Association of morbid obesity and weight change over time with cardiovascular survival in hemodialysis population. Am J Kidney Dis. 2005;46:489–500.

    PubMed  Google Scholar 

  84. Galal W, van Gestel YR, Hoeks SE, et al. The obesity paradox in patients with peripheral arterial disease. Chest. 2008;134:925–30.

    PubMed  Google Scholar 

  85. Hastie CE, Padmanabhan S, Slack R, et al. Obesity paradox in a cohort of 4880 consecutive patients undergoing percutaneous coronary intervention. Eur Heart J. 2010;31:222–6.

    PubMed  CAS  Google Scholar 

  86. Diercks D, Roe MT, Mulgund J, et al. The obesity paradox in non-ST-segment elevation acute coronary syndromes: results from the can rapid risk stratification of unstable angina patients suppress adverse outcomes with early implementation of the American College of Cardiology/American Heart Association guidelines quality improvement initiative. Am Heart J. 2006;152:140–8.

    PubMed  Google Scholar 

  87. Mullen JT, Moorman DW, Davenport DL. The obesity paradox. Ann Surg. 2009;250:166–72.

    PubMed  Google Scholar 

  88. Unger RH. Minireview: weapons of lean body mass destruction: the role of ectopic lipids in the metabolic syndrome. Endocrinology. 2003;144:5159–65.

    PubMed  CAS  Google Scholar 

  89. Montani JP, Carroll JF, Dwyer TM, et al. Ectopic fat storage in the heart, blood vessels and kidneys in the pathogenesis of cardiovascular diseases. Int J Obes Relat Metab Disord. 2004;28:S58–65.

    PubMed  CAS  Google Scholar 

  90. Matsuzawa Y, Nakamura T, Shimomura I, et al. Visceral fat accumulation and cardiovascular disease. Obes Res. 1995;3:S645–7.

    Google Scholar 

  91. Després JP, Lemieux I. Abdominal obesity and metabolic syndrome. Nature. 2006;444:881–7.

    PubMed  Google Scholar 

  92. Stefan N, Kantartzis K, Machann J, et al. Identification and characterization of metabolically benign obesity in humans. Arch Intern Med. 2008;168:1609–16.

    PubMed  Google Scholar 

  93. Wildman RP, Muntner P, Reynolds K, et al. The obese without cardiometabolic risk factors clustering and the normal weight with cardiometabolic risk factor clustering: prevalence and correlates of 2 phenotypes among the US population (NHANES 1999–2004). Arch Intern Med. 2008;168:1617–24.

    PubMed  Google Scholar 

  94. International Diabetes Federation. The IDF consensus worldwide definition of the metabolic syndrome. IDF Publications 2005.

  95. Heitmann BL, Lissner L. Hip hip hurrah! Hip size inversely related to heart disease and total mortality. Obes Rev. 2011;12:478–81.

    PubMed  CAS  Google Scholar 

  96. Dasarathy S, Dasarathy J, Khiyami A, et al. Validity of real time ultrasound in the diagnosis of hepatic steatosis: a prospective study. J Hepatol. 2009;51:1061–7.

    PubMed  Google Scholar 

  97. Fabbrini E, Magkos F, Mohammed BS, et al. Intrahepatic fat, not visceral fat, is linked with metabolic complications of obesity. Proc Natl Acad Sci U S A. 2009;106:15430–5.

    PubMed Central  PubMed  CAS  Google Scholar 

  98. Iacobellis G, Malavazos AE, Corsi MM. Epicardial fat: from the biomolecular aspects to the clinical practice. Int J Biochem Cell Biol. 2011;43:1651–4.

    PubMed  CAS  Google Scholar 

  99. Pories WJ, Dohm LG, Mansfield CJ. Beyond the BMI: the search for better guidelines for bariatric surgery. Obesity. 2010;18:865–71.

    PubMed  Google Scholar 

  100. Sharma AM, Kushner RF. A proposed clinical staging system for obesity. Int J Obes. 2009;33:289–95.

    CAS  Google Scholar 

  101. Padwal RS, Pajewski NM, Allison DB, et al. Using the Edmonton obesity staging system to predict mortality in a population-representative cohort of people with overweight and obesity. CMAJ. 2011;183:E1059–66.

    PubMed Central  PubMed  Google Scholar 

  102. Kuk JL, Ardern CI, Church TS, et al. Edmonton obesity staging system: association with weight history and mortality risk. Appl Physiol Nutr Metab. 2011;36:570–6.

    PubMed  Google Scholar 

  103. Gill RS, Karmali S, Sharma AM. The potential role of the Edmonton obesity staging system in determining indications for bariatric surgery. Obes Surg. 2011;21:1947–9.

    PubMed  Google Scholar 

  104. Buchwald H, Estok R, Fahrbach K, et al. Trends in mortality in bariatric surgery: a systematic review and meta-analysis. Surgery. 2007;142:621–35.

    PubMed  Google Scholar 

  105. Thomas H, Agrawal S. Systematic review of obesity surgery mortality risk score—preoperative risk stratification in bariatric surgery. Obes Surg. 2012;22:1135–40.

    PubMed  Google Scholar 

  106. The Longitudinal Assessment of Bariatric Surgery (LABS) Consortium. Perioperative safety in the longitudinal assessment of bariatric surgery. N Engl J Med. 2009;361:445–54.

    Google Scholar 

  107. De Maria EJ, Portenier D, Wolfe L. Obesity surgery mortality risk score: proposal for a clinically useful score to predict mortality risk in patients undergoing gastric bypass. Surg Obes Relat Dis. 2007;3:134–40.

    Google Scholar 

  108. Blackstone RP, Cortes MC. Metabolic acuity score: effect on major complications after bariatric surgery. Surg Obes Relat Dis. 2010;6:267–73.

    PubMed  Google Scholar 

  109. Turner PL, Saager L, Dalton J, et al. A nomogram for predicting surgical complications in bariatric surgery patients. Obes Surg. 2011;21:655–62.

    PubMed  Google Scholar 

  110. O’Brien PE, Dixon JB, Laurie C, et al. Treatment of mild to moderate obesity with laparoscopic adjustable gastric banding or an intensive medical program: a randomized trial. Ann Intern Med. 2006;144:625–33.

    PubMed  Google Scholar 

  111. Dixon JB, O’Brien PE, Playfair J, et al. Adjustable gastric banding and conventional therapy for type 2 diabetes: a randomized controlled trial. JAMA. 2008;299:316–23.

    PubMed  CAS  Google Scholar 

  112. Lee WJ, Chong K, Ser KH, et al. Gastric bypass vs sleeve gastrectomy for type 2 diabetes mellitus: a randomized controlled trial. Arch Surg. 2011;146:143–8.

    PubMed  Google Scholar 

  113. Schauer PR, Kashyap SR, Wolski K, et al. Bariatric surgery versus intensive medical therapy in obese patients with diabetes. N Engl J Med. 2012;26(366):1567–76.

    Google Scholar 

  114. Ikramuddin S, Korner J, Lee WJ, et al. Roux-en-Y Gastric Bypass vs intensive medical management for the control of type 2 diabetes, hypertension, and hyperlipidemia. The diabetes surgery study randomized clinical trial. JAMA. 2013;309:2240–9.

    PubMed  CAS  Google Scholar 

  115. Li Q, Chen L, Yang Z, et al. Metabolic effects of bariatric surgery in type 2 diabetic patients with body mass index of 35 kg/m2. Diabetes Obes Metab. 2012;14:262–70.

    PubMed  CAS  Google Scholar 

  116. Shah SS, Todkar JS, Shah PS, et al. Diabetes remission and reduced cardiovascular risk after gastric bypass in Asian Indians with body mass index of 35 kg/m2. Surg Obes Relat Dis. 2010;6:332–8.

    PubMed Central  PubMed  Google Scholar 

  117. Huang CK, Shabbir A, Lo CH, et al. Laparoscopic Roux-en-Y gastric bypass for the treatment of type II diabetes mellitus in Chinese patients with body mass index of 25–35. Obes Surg. 2011;21:1344–9.

    PubMed Central  PubMed  Google Scholar 

  118. De Sa VC, Ferraz AA, Campos JM, et al. Gastric bypass in the treatment of type 2 diabetes in patients with a BMI of 30 to 35 kg/m2. Obes Surg. 2011;21:283–7.

    PubMed  Google Scholar 

  119. Cohen R, Pinheiro JC, Schiavon CA, et al. Effects of gastric bypass surgery in patients with type 2 diabetes and only mild obesity. Diabetes Care. 2012;35:1420–8.

    PubMed Central  PubMed  Google Scholar 

  120. Ferzli GS, Dominique E, Ciaglia M, et al. Clinical improvement after duodenojejunal bypass for nonobese type 2 diabetes despite minimal improvement in glycemic homeostasis. World J Surg. 2009;33:972–9.

    PubMed  CAS  Google Scholar 

  121. Geloneze B, Geloneze SR, Fiori C. Surgery for nonobese type 2 diabetic patients: an interventional study with duodeno-jejunal exclusion. Obes Surg. 2009;19:1077–83.

    PubMed  Google Scholar 

  122. Ramos AC, Galvao MP, de Souza YM. Laparoscopic duodenal–jejunal exclusion in the treatment of type 2 diabetes mellitus in patients with BMI < 30 kg/m2 (LBMI). Obes Surg. 2009;19:307–12.

    PubMed  Google Scholar 

  123. Scopinaro N, Papadia F, Marinari G, et al. Long-term control of type 2 diabetes mellitus and other major components of the metabolic syndrome after biliopancreatic diversion in patients with BMI < 35 kg/m2. Obes Surg. 2007;17:185–92.

    PubMed  Google Scholar 

  124. Chiellini C, Rubino F, Castagneto M, et al. The effects of bilio-pancreatic diversion on type 2 diabetes in patients with BMI < 35 kg/m2. Diabetologia. 2009;52:1027–30.

    PubMed  CAS  Google Scholar 

  125. Scopinaro N, Adami GF, Papadia FS, et al. The effects of biliopancreatic diversion on type 2 diabetes mellitus in patients with mild obesity (BMI 30–35 kg/m2) and simple overweight (BMI 25–30 kg/m2): a prospective controlled study. Obes Surg. 2011;21:880–8.

    PubMed  Google Scholar 

  126. Lee WJ, Wang W, Lee YC, et al. Effect of laparoscopic mini-gastric bypass for type 2 diabetes mellitus: comparison of BMI > 35 kg/m2. J Gastrointest Surg. 2008;12:945–52.

    PubMed  Google Scholar 

  127. Lee WJ, Chong K, Chen CY, et al. Diabetes remission and insulin secretion after gastric bypass in patients with body mass index < 35 kg/m2. Obes Surg. 2011;21:889–95.

    PubMed  Google Scholar 

  128. De Paula AL, Macedo ALV, Schraibman V, et al. Hormonal evaluation following laparoscopic treatment of type 2 diabetes mellitus patients with BMI 20–34. Surg Endosc. 2009;23:1724–32.

    Google Scholar 

  129. Reis CEG, Alvarez-Leite JI, Bressan J, et al. Role of bariatric–metabolic surgery in the treatment of obese type 2 diabetes with body mass index < 35 kg/m2: a literature review. Diab Technol Ther. 2012;14(4):365–72.

    CAS  Google Scholar 

  130. Cohen R, Caravatto PP, Correa JL, et al. Glycemic control after stomach-sparing duodenal–jejunal bypass surgery in diabetic patients with low body mass index. Surg Obes Relat Dis. 2012;8:375–80.

    PubMed  Google Scholar 

  131. Maglione MA, Gibbons MM, Livhits M, et al. Bariatric surgery and nonsurgical therapy in adults with metabolic conditions and a body mass index of 30.0 to 34.9 kg/m2. Rockville: Agency for Healthcare Research and Quality (US); 2013.

    Google Scholar 

  132. Parikh M, Issa R, Vieira D, et al. Role of bariatric surgery as treatment for type 2 diabetes in patients who do not meet current NIH criteria: a systematic review and meta-analysis. J Am Coll Surg. 2013;217:527–32.

    PubMed  Google Scholar 

  133. Flum DR, Belle SH, et al. Perioperative safety in the longitudinal assessment of bariatric surgery. N Engl J Med. 2009;361:445–54.

    PubMed  Google Scholar 

  134. De Maria EJ, Winegar DA, Pate VW, et al. Early postoperative outcomes of metabolic surgery to treat diabetes from sites participating in the ASMBS bariatric surgery center of excellence program as reported in the bariatric outcomes longitudinal database. Ann Surg. 2010;252:559–66.

    Google Scholar 

  135. Parikh M, Duncombe J, Fielding GA. Laparoscopic adjustable gastric banding for patients with body mass index < 35 kg/m2. Surg Obes Relat Dis. 2006;2:518–22.

    PubMed  CAS  Google Scholar 

  136. Sultan S, Parikh M, Youn H, et al. Early U.S. outcomes after laparoscopic adjustable gastric banding in patients with a body mass index less than 35 kg/m2. Surg Endosc. 2009;23:1569–73.

    PubMed  Google Scholar 

  137. Choi J, Digiorgi M, Milone L, et al. Outcomes of laparoscopic adjustable gastric banding in patients with low body mass index. Surg Obes Relat Dis. 2010;6:367–71.

    PubMed  Google Scholar 

  138. Kakoulidis TP, Karringer A, Gloaguen T, et al. Initial results with sleeve gastrectomy for patients with class I obesity (BMI 30–35 kg/m2). Surg Obes Relat Dis. 2009;5:425–8.

    PubMed  Google Scholar 

  139. Abbatini F, Capoccia D, Casella G, et al. Type 2 diabetes in obese patients with body mass index of 30–35 kg/m2: sleeve gastrectomy versus medical treatment. Surg Obes Relat Dis. 2012;8:20–4.

    PubMed  Google Scholar 

  140. Angrisani L, Favretti F, Furbetta F, et al. Italian group for lap-band system: results of multicenter study on patients with BMI r 35 kg/m2. Obes Surg. 2004;14:415–8.

    PubMed  CAS  Google Scholar 

  141. Serrot FJ, Dorman RB, Miller CJ, et al. Comparative effectiveness of bariatric surgery and nonsurgical therapy in adults with type 2 diabetes mellitus and body mass index of 35 kg/m2. Surgery. 2011;150:684–91.

    PubMed  Google Scholar 

  142. Frenken M, Cho EY. Metabolic intestinal bypass surgery for type 2 diabetes in patients with a BMI of 35 kg/m2: comparative analysis of 16 patients undergoing either BPD, BPD-DS, or RYGB. Obes Facts. 2011;4:13–7.

    PubMed  Google Scholar 

  143. Gianos M, Abdemur A, Fendrich I, et al. Outcomes of bariatric surgery in patients with body mass index < 35 kg/m2. Surg Obes Relat Dis. 2012;8:25–30.

    PubMed  Google Scholar 

  144. Angrisani L, Cutolo PP, Formisano GP, et al. Long-term outcomes of laparoscopic adjustable silicone gastric banding (LAGB) in moderately obese patients with and without co-morbidities. Obes Surg. 2013;23:897–902.

    PubMed  Google Scholar 

  145. Deitel M. Slow-progression, autoimmune, type 1 diabetes in adults: a cause of failure of resolution of diabetes after bariatric surgery. Surg Obes Relat Dis. 2009;5:705–6.

    PubMed  Google Scholar 

  146. Deitel M. Update: why diabetes does not resolve in some patients after bariatric surgery. Obes Surg. 2011;21:794–6.

    PubMed  Google Scholar 

  147. Wells JC. Ethnic variability in adiposity, thrifty phenotypes and cardiometabolic risk: addressing the full range of ethnicity, including those of mixed ethnicity. Obes Rev. 2012;13 Suppl 2:14–29.

    PubMed  Google Scholar 

  148. WHO. Obesity: preventing and managing the global epidemic. Report of a who consultation. World Health Organ Tech Rep Ser. 2000;894:1–253.

    Google Scholar 

  149. Inge TH, Krebs NF, Garcia VF, et al. Bariatric surgery for severely overweight adolescents: concerns and recommendations. Pediatrics. 2004;114:217–23.

    PubMed  Google Scholar 

  150. Baur LA, Fitzgerald DA. Recommendations for bariatric surgery in adolescents in Australia and New Zealand. J Paediatr Child Health. 2010;46:704–7.

    PubMed  Google Scholar 

  151. Bannerman E, Miller MD, Daniels LA, et al. Anthropometric indices predict physical function and mobility in older Australians: the Australian longitudinal study of ageing. Public Health Nutr. 2002;5:655–62.

    PubMed  Google Scholar 

  152. Villareal DT, Chode S, Parimi N, et al. Weight loss, exercise, or both and physical function in obese older adults. N Engl J Med. 2011;364:1218–29.

    PubMed Central  PubMed  CAS  Google Scholar 

  153. Houston DK, Nicklas BJ, Zizza CA. Weighty concerns: the growing prevalence of obesity among older adults. J Am Diet Assoc. 2009;109:1886–95.

    PubMed  CAS  Google Scholar 

  154. Zajacova A, Ailshire J. Body mass trajectories and mortality among older adults: a joint growth mixture-discrete-time survival analysis. Gerontologist 2013 Jan 25 [Epub ahead of print].

  155. Buchwald H, Oien DM. Metabolic/bariatric surgery worldwide 2011. Obes Surg. 2013;23:427–36.

    PubMed  Google Scholar 

  156. Picot J, Jones J, Colquitt JL, et al. Weight loss surgery for mild to moderate obesity: a systematic review and economic evaluation. Obes Surg. 2012;22:1496–506.

    PubMed  Google Scholar 

  157. Berrington de Gonzalez A, Hartge P, Cerhan JR, et al. Body-mass index and mortality among 1.46 million white adults. N Engl J Med. 2010;363:2211–9.

    PubMed  CAS  Google Scholar 

  158. Buchwald H, Avidor Y, Braunwald E, et al. Bariatric surgery. A systemic review and meta-analysis. JAMA. 2004;292:1724–37.

    PubMed  CAS  Google Scholar 

  159. Schauer PR, Ikramuddin S, Gourash W, et al. Outcomes after laparoscopic Roux-en-Y gastric bypass for morbid obesity. Ann Surg. 2000;232:515–29.

    PubMed Central  PubMed  CAS  Google Scholar 

  160. DePaula AL, Stival A, Halpern A, et al. Thirty-day morbidity and mortality of the laparoscopic ileal interposition associated with sleeve gastrectomy for the treatment of type 2 diabetic patients with BMI < 35: an analysis of 454 consecutive patients. World J Surg. 2011;35:102–8.

    PubMed  Google Scholar 

  161. McKneally MF, Daar AS. Introducing new technologies: protecting subjects of surgical innovation and research. World J Surg. 2003;27:930–5.

    PubMed  Google Scholar 

  162. Roman S, Napoleon B, Mion F, et al. Intragastric balloon for “non-morbid” obesity: a retrospective evaluation of tolerance and efficacy. Obes Surg. 2004;14:539–44.

    PubMed  Google Scholar 

  163. Champion JK, Williams M, Champion S, et al. Implantable gastric stimulation to achieve weight loss in patients with a low body mass index: early clinical results. Surg Endosc. 2006;20:444–7.

    PubMed  CAS  Google Scholar 

  164. Afterburner DE, Bogart A, Sherwood NE, et al. A multisite study of long-term remission and relapse of type 2 diabetes mellitus following gastric bypass. Obes Surg. 2013;23:93–102.

    Google Scholar 

  165. Ritz P, Hanaire H. Post-bypass hypoglycaemia: a review of the current findings. Diabetes Metab. 2011;37:274–81.

    PubMed  CAS  Google Scholar 

  166. Lerner H, Whang J, Nipper R. Benefit–risk paradigm for clinical trial design of obesity devices: FDA proposal. Surg Endosc. 2013;27:702–7.

    PubMed  Google Scholar 

  167. Reinhold RB. Critical analysis of long term weight loss following gastric bypass. Surg Gynecol Obstet. 1982;155:385–94.

    PubMed  CAS  Google Scholar 

  168. Metropolitan height and weight tables. 64, 3–9. 1983. New York, Metropolitan Life Foundation. Statistical Bulletin

  169. Committee on Standards for Reporting Results, American Society for Bariatric Surgery. Standards for reporting results. Obes Surg 1994;4:56–65.

    Google Scholar 

  170. Junior WS, Campos CS, Nonino CB. Reporting results after bariatric surgery: reproducibility of predicted body mass index. Obes Surg. 2012;22:519–22.

    PubMed  Google Scholar 

  171. Deitel M, Gawdat K, Melissas J. Reporting weight loss. Obes Surg. 2007;17:565–8.

    PubMed  Google Scholar 

  172. Belle SH, Berk PD, Courcoulas AP, et al. Reporting weight change: Standardized reporting accounting for baseline weight. Surg Obes Relat Dis. 2013;9:782–9.

    Google Scholar 

  173. Sabin J, Fanelli R, Flaherty H, et al. Best practice guidelines on informed consent for weight loss surgery patients. Obes Res. 2005;13:250–3.

    PubMed  Google Scholar 

  174. Sarr MG, Billington CJ, Brancatisano R, et al. The EMPOWER study: randomized, prospective, double-blind, multicenter trail of vagal blockade to induce weight loss in morbid obesity. Obes Surg. 2012;11:1771–82.

    Google Scholar 

  175. Shikora SA, Bergenstal R, Bessler M, et al. Implantable gastric stimulation for the treatment of clinically severe obesity: results of the SHAPE trial. Surg Obes Relat Dis. 2009;5:31–7.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luca Busetto.

Additional information

The Position Statement has been written by a working group formed by members of the International Federation for the Surgery of Obesity and Metabolic Disorders (IFSO)-The Position Statement has been discussed and approved by the Executive Board of the International Federation for the Surgery of Obesity and Metabolic Disorders (IFSO).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Busetto, L., Dixon, J., De Luca, M. et al. Bariatric Surgery in Class I Obesity. OBES SURG 24, 487–519 (2014). https://doi.org/10.1007/s11695-014-1214-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11695-014-1214-1

Keywords

Navigation