Skip to main content
Log in

Pharmacokinetics and Tissue Distribution of Recombinant Human Transforming Growth Factor Beta1 After Topical and Intravenous Administration in Male Rats

  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Recombinant human transforming growth factor beta (rhTGF-β1) enhances the healing process after topical application to various animal wound models. A detailed pharmacokinetic and tissue distribution study was performed to support the clinical development of rhTGF-β1 for wound healing indications. Rats received radioiodinated or unlabeled rhTGF-β1 as an intravenous (iv) bolus or as a topical formulation applied to a full thickness wound. Plasma concentrations of TGF-β1 were estimated from TCA-precipitable radioactivity or were measured by ELISA. Following iv administration, the initial half-life was rapid (<11 min), regardless of whether radi-olabeled or unlabeled rhTGF-β1 was used. The terminal half-life was long (163 min) when the test material was radioiodinated and administered as a trace dose and relatively short (≤61 min) when given at high doses and assayed by ELISA. Analysis of plasma radioactivity by SDS-PAGE revealed a time-dependent clearance of the 25-kDa parent molecule without a significant appearance of lower molecular weight radiolabeled metabolites. The majority of the radioactivity was associated with highly perfused organs, known iodide elimination pathways, and the thyroid at 1 and 8 hr after iv injection. After topical administration of a high dose (0.8 mg/kg), no immunoreactive TGF-β1 was detectable in plasma samples taken over a 48-hr period. However, trace amounts (≤0.05 ng/mL) of acid-precipitable radioactivity were detected in plasma after topical application of [125I]rhTGF-β1 (1 µg/kg, 126 µCi/kg). A significant portion (35%) of the [125I]rhTGF-β1 persisted intact (25 kDa) at the wound site 24 hr after application. In conclusion, rhTGF-β1 was rapidly cleared after iv bolus administration and distributed primarily to the liver, lungs, kidney, and spleen. Little systemic exposure was observed after applying a single topical dose of rhTGF-β1 to a wound, and the intact molecule persisted at the wound site.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

REFERENCES

  1. J. Massagué. The TGF-β1 family of growth and differentiation factors. Cell 49:7059–7066 (1987).

    Google Scholar 

  2. M. B. Sporn, A. B. Roberts, L. M. Wakefield, and B. de Crombrugghe. Some recent advances in the chemistry and biology of transforming growth factor-β. J. Cell Biol. 105:1039–1045 (1987).

    Google Scholar 

  3. H. L. Moses. The biological actions of transforming growth factor β. In V. R. Sara et al. (eds.), Growth Factors: From Genes to Clinical Application. Raven Press, New York, 1990; pp. 141–155.

    Google Scholar 

  4. A. B. Roberts, M. A. Anzano, L. C. Lamb, J. M. Smith, and M. B. Sporn. New class of transforming growth factors potentiated by epidermal growth factor: Isolation from non-neoplastic tissues. Proc. Natl. Acad. Sci. USA 78:5339–5343 (1981).

    Google Scholar 

  5. R. K. Assoian, A. Komoriya, C. A. Meyers, D. M. Miller, and M. B. Sporn. Transforming growth factor-beta in human platelets. J. Biol. Chem. 258:7155–7160 (1983).

    Google Scholar 

  6. C. A. Frolik, L. L. Dart, C. A. Meyers, D. M. Smith, and M. B. Sporn. Purification and initial characterization of a type beta transforming growth factor from human placenta. Proc. Natl. Acad. Sci. USA 80:3676–3680 (1983).

    Google Scholar 

  7. A. B. Roberts, M. A. Anzano, C. A. Meyers, J. Wideman, R. Blacher, Y.-C. E. Pan, S. Stein, S. R. Lehrman, J. M. Smith, L. C. Lamb, and M. B. Sporn. Purification and properties of a type beta transforming growth factor from bovine kidney. Biochemistry 22:5692–5698 (1983).

    Google Scholar 

  8. R. Derynck, J. A. Jarrett, E. Y. Chen, D. H. Eaton, J. R. Bell, R. K. Assoian, A. B. Roberts, M. B. Sporn, and D. V. Goeddel. Human transforming growth factor-β complementary DNA sequence and expression in normal and transformed cells. Nature 316:701–705 (1985).

    Google Scholar 

  9. A. E. Postlethwaite, J. Keski-Oja, H. Moses, and A. Kang. Stimulation of the chemotactic migration of human fibroblasts by transforming growth factor β. J. Exp. Med. 165:251–256 (1987).

    Google Scholar 

  10. M. Centrella, T. L. McCarthy, and E. Canalis. Transforming growth factor is a bifunctional regulator of replication and collagen synthesis in osteoblast-enriched cell cultures from fetal rat bone. J. Biol. Chem. 262:2869–2874 (1987).

    Google Scholar 

  11. P. G. Robey, M. F. Young, K. C. Flanders, N. S. Roche, P. Kondaiah, A. H. Reddi, J. D. Termine, M. B. Sporn, and A. B. Roberts. Osteoblasts synthesize and respond to TGF-β in vitro. J. Cell Biol. 105:457–463 (1987).

    Google Scholar 

  12. J. Massagué. The transforming growth factor-β family. Annu. Rev. Cell Biol. 6:597–641 (1990).

    Google Scholar 

  13. R. A. Ignotz, T. Endo, and J. Massagué. Transforming growth factor-beta stimulates the expression of fibronectin and collagen and their incorporation into the extracellular matrix. J. Biol. Chem. 261:4337–4345 (1986).

    Google Scholar 

  14. T. A. Mustoe, G. F. Pierce, A. Thomason, P. Gramates, M. B. Sporn, and T. F. Deuel. Accelerated healing of incisional wounds in rats induced by transforming growth factor-β. Science 237:1333–1336 (1987).

    Google Scholar 

  15. L. J. Curtsinger, J. D. Pietsch, G. L. Brown, A. V. Fraunhofer, D. Ackerman, H. C. Polk, and G. S. Schultz. Reversal of adriamycin-impaired wound healing by transforming growth factor beta. Surg. Gynecol. Obstet. 168:517–522 (1989).

    Google Scholar 

  16. L. S. Beck, T. L. Chen, S. E. Hirabayashi, L. Deguzman, W. P. Lee, L. L. McFatridge, Y. Xu, R. L. Bates, and A. J. Ammann. Accelerated healing of ulcer wounds in the rabbit ear by recombinant human transforming growth factor-β1. Growth Factors 2:273–282 (1990).

    Google Scholar 

  17. C. A. Frolik, L. M. Wakefield, D. M. Smith, and M. B. Sporn. Characterization of a membrane receptor for transforming growth factor-β in normal rat kidney fibroblasts. J. Biol. Chem. 259:10995–11000 (1984).

    Google Scholar 

  18. D. Danielpour, L. L. Dart, K. C. Flanders, A. B. Roberts, and M. B. Sporn. Immunodetection and quantitation of the two forms of transforming growth factor-beta (TGF-β1 and TGF-β2) secreted by cells in culture. J. Cell Physiol. 138:79–86 (1989).

    Google Scholar 

  19. J. W. Prothero. Scaling of blood parameters in mammals. Comp. Biochem. Physiol. 67A:649–657 (1980).

    Google Scholar 

  20. C. Lucas, L. N. Bald, B. M. Fendley, M. Mora-Worms, I. S. Figari, E. J. Patzer, and M. A. Palladino. The autocrine production of transforming growth factor-β1 during lymphocyte activation. A study with a monoclonal antibody-based ELISA. J. Immunol. 145:1415–1422 (1990).

    Google Scholar 

  21. C. Lucas, B. M. Fendly, V. R. Mukku, W. L. Wong, and M. A. Palladino. Generation of antibodies and assays for transforming growth factor β. Methods Enzymol. 198:303–316 (1991).

    Google Scholar 

  22. J. G. Wagner. Linear pharmacokinetic equations allowing direct calculation of many needed pharmacokinetic parameters from the coefficients and exponents of polyexponential equations which have been fitted to the data. J. Pharmacokin. Biopharm. 4:443–467 (1976).

    Google Scholar 

  23. J. Mordenti and A. Rescigno. Estimation of permanence time, exit time, dilution factor, and steady-state volume of distribution. Pharm. Res. 9:17–25 (1992).

    Google Scholar 

  24. R. J. Coffey, L. J. Kost, R. M. Lyons, H. L. Moses, and N. F. Larusso. Hepatic processing of transforming growth factor β in the rat. J. Clin. Invest. 80:750–757 (1987).

    Google Scholar 

  25. L. M. Wakefield, T. S. Winokur, R. S. Hollands, K. Christopherson, A. D. Levinson, and M. B. Sporn. Recombinant latent TGF-β1 has a longer plasma half-life in rats than active TGF-β1, and a different tissue distribution. J. Clin. Invest. 86:1976–1984 (1990).

    Google Scholar 

  26. D. J. Webb, K. P. Crookston, S. W. Hall, and S. L. Gonias. Binding of transforming growth factor β1 to immobilized alpha2-macroglobulin. Arch. Biochem. Biophys. 292:487–492 (1992).

    Google Scholar 

  27. J. LaMarre, A. M. Hayes, G. K. Wollenberg, I. Hussaini, S. W. Hall, and S. L. Gonias. An α2-macroglobulin receptor-dependent mechanism for the plasma clearance of transforming growth factor-β1 in mice. J. Clin. Invest. 87:39–44 (1991).

    Google Scholar 

  28. T. G. Terrell, P. K. Working, C. P. Chow, and J. D. Green. Pathology of recombinant human transforming growth factor-β1 (rhTGF-β1) in rats and rabbits. Int. Rev. Exp. Pathol. 34B:43–68 (1993).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zioncheck, T.F., Chen, S.A., Richardson, L. et al. Pharmacokinetics and Tissue Distribution of Recombinant Human Transforming Growth Factor Beta1 After Topical and Intravenous Administration in Male Rats. Pharm Res 11, 213–220 (1994). https://doi.org/10.1023/A:1018995005775

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1018995005775

Navigation