Skip to main content

Advertisement

Log in

Histological Aggressiveness of Fluorodeoxyglucose Positron-Emission Tomogram (FDG-PET)-Detected Incidental Thyroid Carcinomas

  • Original Papers
  • Head and Neck Oncology
  • Published:
Annals of Surgical Oncology Aims and scope Submit manuscript

Abstract

Background

We previously reported a high incidence of primary thyroid cancer in fluorodeoxyglucose positron-emission tomogram (FDG-PET)-detected incidental thyroid abnormalities. The aim of our study was to determine if these FDG-PET-detected thyroid malignancies represent a more-aggressive variant of primary thyroid carcinoma.

Materials and methods

All patients that underwent operative intervention for FDG-PET-detected incidental thyroid abnormalities were identified (June 2003 to April 2006). Patients with a diagnosis of primary thyroid carcinoma on final histopathology were included in the study. The patient demographics and histopathological findings were analyzed to identify adverse prognostic features.

Results

In 11,500 patients, 17,250 FDG-PET scans were performed; 377 of these patients (3.2% of patients and 2.1% of FDG-PET scans) had findings positive for thyroid abnormality. Of the 32 patients that underwent operative intervention, 22 patients with a final diagnosis of primary thyroid malignancy were included in the study. A greater number of patients [12 patients, (54%)] were noted to harbor poor prognostic variants of primary thyroid carcinoma on final histopathology [tall-cell variant: 11 patients (50%) and poorly differentiated thyroid carcinoma: 1 patient (4%)]. Extra-thyroidal extension (ETE) was noted in the majority of patients [14 patients (63%)]. In patients with tall cell variant on final histopathology, the rate of ETE was even higher [10 patients (90%)].

Conclusion

Thyroid malignancies incidentally detected on FDG-PET scan harbor a high rate of unfavorable prognostic features and may represent a more-aggressive variant of primary thyroid carcinoma. These patients need to be subjected to further investigation with a view to possible operative intervention.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1.
FIG. 2.

Similar content being viewed by others

REFERENCES

  1. Are C, Hsu JF, Schoder H, Shah JP, Larson SM, Shaha AR. FDG-PET detected thyroid incidentalomas: Need for further investigation? Ann Surg Oncol 2007;14(1):239–47

    Article  PubMed  Google Scholar 

  2. Cohen MS, Arslan N, Dehdashti F, Doherty G, Lairmore TC, Brunt M, Moley JF. Risk of malignancy in thyroid incidentalomas identified by fluorodeoxyglucose-positron emission tomography. Surgery 2001;130(6):941–946

    Article  PubMed  CAS  Google Scholar 

  3. Chen YK, Ding HJ, Chen KT, et al. Prevalence and risk of cancer of focal thyroid incidentalomas identified by 18F-Fluorodeoxyglusocse positron emission tomography for cancer screening in healthy subjects. Anticancer Res 2005;25:1421–1426

    PubMed  Google Scholar 

  4. Kim TY, Kim WB, Ryu JS, Gong G, Hong SJ, Shong YK. 18F-Fluorodeoxyglusocse uptake in thyroid from positron emission tomogram (PET) for evaluation in cancer patients: high prevalence of malignancy in thyroid PET incidentalomas. Laryngoscope 2005;115:1074–1078

    Article  PubMed  Google Scholar 

  5. Ishimori T, Patel PV, Wahl RL. Detection of unexpected additional primary malignancies with FDG-PET/CT. J Nucl Med 2005;46(5):752–757

    PubMed  Google Scholar 

  6. Kang KW, Kim SK, Kang HS, et al. Prevalence and risk of cancer of focal thyroid incidentalomas identified by 18F-Fluorodeoxyglusocse positron emission tomography for metastasis evaluation and cancer screening in healthy subjects. J Clin Endo Met 2005;88(9):4100–4104

    Article  CAS  Google Scholar 

  7. Chu QD, Connor MS, Lilien DL, Johnson LW, Turnage RH, Li BD. Positron emission tomography (PET) positive thyroid incidentaloma: the risk of malignancy observed in a tertiary referral center. Am Surg 2006;72(3):272–5

    PubMed  Google Scholar 

  8. Rosai J, Carcangiu, ML, DeLellis RA. Tumors of the thyroid gland. Atlas of tumor pathology. Washington, DC: Armed Forces Inst Pathol 1992:161–182

  9. Bloom AD, Adler LP, Shuck JM. Determination of malignancy of thyroid nodules with positron emission tomography. Surgery 1993;114:728–735

    PubMed  CAS  Google Scholar 

  10. Sasaki M, Ichiya Y, Kuwabara Y, et al. An evaluation of FDG-PET in the detection and differentiation of thyroid tumours. Nucl Med Commun 1997;18:957–963

    Article  PubMed  CAS  Google Scholar 

  11. Umetasu J, Sadato N, Ohtsubo T, et al. Fluorine-18 – fluorodeoxyglucose PET versus thallium-201 scintigraphy evaluation of thyroid tumours. J Nucl Med 1998;39:453–459

    Google Scholar 

  12. Gasparoni P, Rubello D, Ferlin G. Potential role of fluorine-18- fluorodeoxyglucose (FDG) positron emission tomography (PET) in the staging of primitive and recurrent medullary thyroid carcinoma. J Endocrinol Invest 1997;20:527–530

    PubMed  CAS  Google Scholar 

  13. Feine U, Leitznmayer R, hanke J-P, et al. Flourine -18-FDG and iodine-131 iodide uptake in thyroid tissue. J Nucl Med 1996;37:1468–1472

    PubMed  CAS  Google Scholar 

  14. de Geus-Oei LF, Pieters GF, Bonenkamp JJ, Mudde AH, Bleeker-Rovers CP, Corstens FH, Oyen WJ. 18 F-FDG PET reduces unnecessary hemithyroidectomies for thyroid nodules with inconclusive cytologic results. J Nucl Med 2006;47:770–775

    PubMed  Google Scholar 

  15. Mitchell JC, Grant F, Evenson AR, Parker JA, Hasselgren PO, Parangi S. Pre operative evaluation of thyroid nodules with 18 FDG PET/CT. Surgery 2005;138:1166–1174

    Article  PubMed  Google Scholar 

  16. Are C, Shaha AR. Anaplastic thyroid carcinoma: Biology, Pathogenesis, Prognostic factors and treatment approaches. Ann Surg Oncol 2006;13:453–464

    Article  PubMed  Google Scholar 

  17. Lam AK, Lo CY, Lam KS. Papillary carcinoma of thyroid: A 30-yr clinicopathological review of the histological variants. Endocr Pathol Winter 2005;16(4):323–30

    Article  Google Scholar 

  18. Machens A, Holzhausen HJ, Lautenschlager C, Dralle H. The tall-cell variant of papillary thyroid carcinoma: a multivariate analysis of clinical risk factors. Langenbecks Arch Surg 2004; 389(4):278–82

    Article  PubMed  Google Scholar 

  19. Michels JJ, Jacques M, Henry-Amar M, Bardet S. Prevalence and prognostic significance of tall cell variant of papillary thyroid carcinoma. Hum Pathol 2007;38(2):212–9

    Article  PubMed  Google Scholar 

  20. Johnson TL, Lloyd RV, Thompson NW, Beierwaltes WH, Sisson JC. Prognostic implications of the tall cell variant of papillary thyroid carcinoma. Am J Surg Pathol 1988;12(1):22–7

    Article  PubMed  CAS  Google Scholar 

  21. Prendiville S, Burman KD, Ringel MD, et al. Tall cell variant: an aggressive form of papillary thyroid carcinoma. Otolaryngol Head Neck Surg 2000;122(3):352–7

    Article  PubMed  CAS  Google Scholar 

  22. Siironen P, Louhimo J, Nordling S, Ristimaki A, Maenpaa H, Haapiainen R, Haglund C. Prognostic factors in papillary thyroid cancer: an evaluation of 601 consecutive patients. Tumour Biol 2005;26(2):57–64

    Article  PubMed  Google Scholar 

  23. Clark JR, Lai P, Hall F, Borglund A, Eski S, Freeman JL. Variables predicting distant metastases in thyroid cancer. Laryngoscope 2005;115(4):661–7

    PubMed  Google Scholar 

  24. Bellantone R, Lombardi CP, Boscherini M, et al. Prognostic factors in differentiated thyroid carcinoma: a multivariate analysis of 234 consecutive patients. J Surg Oncol 1998;68(4):237–41

    Article  PubMed  CAS  Google Scholar 

  25. Andersen PE, Kinsella J, Loree TR, Shaha AR, Shah JP. Differentiated carcinoma of the thyroid with extrathyroidal extension. Am J Surg 1995;170(5):467–70

    Article  PubMed  CAS  Google Scholar 

  26. Shaha AR, Loree TR, Shah JP. Prognostic factors and risk group analysis in follicular carcinoma of the thyroid. Surgery 1995;118(6):1131–6; discussion 1136–8

    Article  PubMed  CAS  Google Scholar 

  27. Wreesmann VB, Sieczka EM, Socci ND. Genome-Wide Profiling of Papillary Thyroid Cancer Identifies MUC1 as an Independent Prognostic Marker. Cancer Res 2004;64:3780–3789

    Article  PubMed  CAS  Google Scholar 

  28. Sobrinho-Simoes MA, Nesland JM, Holm R, Sambade MC, Johannessen JV. Hurthle cell and mitochondrion-rich papillary carcinomas of the thyroid gland: an ultrastructural and immunocytochemical study. Ultrastruct Pathol 1985;8(2–3):131–42

    PubMed  CAS  Google Scholar 

  29. S Mathupala P, Ko YH, Pedersen PL. Hexokinase II: Cancer’s double-edged sword acting as both facilitator and gatekeeper of malignancy when bound to mitochondria. Oncogene 2006;25:4777–4786

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chandrakanth Are MD.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Are, C., Hsu, J.F., Ghossein, R.A. et al. Histological Aggressiveness of Fluorodeoxyglucose Positron-Emission Tomogram (FDG-PET)-Detected Incidental Thyroid Carcinomas. Ann Surg Oncol 14, 3210–3215 (2007). https://doi.org/10.1245/s10434-007-9531-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1245/s10434-007-9531-4

Keywords

Navigation